
WINMOR Phase 2:  Demonstration to Deployment 

Rick Muething, KN6KB/AAA9WK; Winlink Development Team 

rmuething@cfl.rr.com  

Abstract:   

In September 2008 I introduced WINMOR  (WINlink Message Over Radio)  at the ARRL/TAPR 

DCC in Chicago [1].    Success with that preliminary test version of WINMOR sparked interest in the 

protocol and the creation of an active Yahoo WINMOR group. This in turn accelerated the 

development of client software, RMS Express, needed for on-air beta testing.  This paper addresses the 

challenges of completing the development and deploying viable client and server software supporting 

WINMOR.  The advanced layered Viterbi Trellis Code Modulation and Reed-Solomon FEC used in 

WINMOR are also summarized. A novel Virtual TNC model that implements the protocol is described 

along with some of the applications that support WINMOR based on this Virtual TNC.   

 

Key Words:  

WINMOR,  SCAMP, Virtual TNC, ARQ, TCM. Winlink 2000, RMS Express.  

 

Background and Motivation….What was the need? 

First, some brief background and the motivation for the WINMOR project.  Pactor has been the 

benchmark for HF messaging ARQ (Automatic Retry reQuest) protocols since its deployment in the 

late 1980s.  The Pactor 2 and Pactor 3 protocols still yield some of the best throughput available over a 

wide range of propagation channels. SCAMP [2] had demonstrated sound card ARQ on a PC was 

possible but identified some critical requirements that were necessary for practical deployment. But 

proprietary Pactor TNCs can be expensive and too often that restricts the access to these efficient HF 

modes.  Those seeking a lower cost way to access HF messaging kept asking, “Can’t you do something 

that performs like Pactor with a sound card?”  Today’s higher speed PC’s now offer an opportunity to 

do much of the advanced signal processing required for good HF performance.  The goal of the 

WINMOR project is to provide a sound card ARQ mode (error free delivery of data) that approaches 

Pactor 2 and 3 in performance on a modern PC using standard PC sound cards.  Operating system 

issues (both Linux and Windows) combined with existing Pactor timing constraints and proprietary 

issues make emulation of Pactor on a PC impractical.  WINMOR was developed from the ground up 

optimized for data messages and to be compatible with the performance and timing constraints of a 

modern PC and operating system.  Another objective of WINMOR was to work with most existing PC 

sound cards and sound card interfaces so that WINMOR could be used alongside other popular sound 

card modes.  

mailto:rmuething@cfl.rr.com


At the time of introduction of WINMOR at the 2008 DCC most of the alpha testing had been limited to 

HF simulators using identical sound cards (SignaLink USB). The simulator allowed testing and 

optimizing the algorithms over numerous S/N levels and propagation channels.  This repeatability of 

the HF simulator made it possible to go back and make accurate comparisons of different 

implementations. But like any new system it can’t really be tested and wrung out until it is deployed in 

into the real world….time for over-the-air beta testing! 

 

After the warm glow of initial enthusiasm comes the cold reality of making it work! 

It was obvious we needed a vehicle to test the WINMOR protocol in a real message over-the-air 

environment. Vic Poor, W5SMM my mentor and co-developer came up with a simplified but quite 

useful Windows radio client program called RMS Express [3]. This allowed creating and managing 

messages, adding attachments etc. and interfaced to the WINMOR codec software.  RMS Express was 

simple to learn, easy to setup and use and since it didn’t (yet!) have all the bells and whistles of more 

complex radio clients allowed us to concentrate on the primary objective… testing, debugging and 

optimizing the WINMOR protocol on the PC. Since there were no servers available yet RMS Express 

would have to operate both as a server and client allowing what we called peer-to-peer testing. 

(Forwarding messages between two RMS Express clients) 

One of the first setbacks that came with the initial peer-to-peer radio tests was the realization that all 

sound cards were far from equal.  Specifically the critical sample rate varied on some otherwise quite 

useable sound cards by over 1%.  One percent may not sound like much of an error if you’re playing a 

MP3 file but in a multi-carrier PSK scheme like WINMOR it made it impossible to do reliable 

decoding. Furthermore wide band calibration/correction of the sound card sample rate using software 

with that large error was simply not practical in WINMOR without a significant impact to throughput. 

One doesn’t have to spend much time looking under the hood of hardware DSP modems to find they 

universally incorporate some form of precision temperature-stabilized time base (often 10 ppm or 

better).  That’s more than 1000 times better than the accuracy observed across typical sound cards!  

This prompted a relatively broad test of many sound cards across all available sample rates which 

came up with an unexpected observation. Most of the variations in sample rate were associated with 

the specific sample rates of 8000, 11025 and 44100 Hz.  Sample rates of 96000, 48000 and 12000 

almost universally were more accurate with most sound cards being within a few hundred ppm of the 

target rate…an error small enough to be corrected. The large variations were most likely due to a 

combination of the chip and driver implementations. The bad news was all the algorithms, carrier 

spacing, symbol counts, filters  etc for WINMOR had all been done for  the 8000 Hz sample rate (62.5 

baud).  It became obvious what was necessary was to select one of the more accurate sample rates and 

redo the software based on that. I remember Vic and I reaching that same conclusion knowing how 

much code it would impact. It took over a month of intense effort to rewrite, test and re optimize the 

software to work with a new 48000 sample rate on capture and 12000 rate on playback….but in the 

end this solved virtually all the sound card compatibility issues.  Sampling at the 48000 rate also made 

it possible to do direct I Q (quadrature) sampling (keeping half of the samples) yielding I and Q 



channels sampled at 12000 Hz. That saved processing time and made balanced mixing (tuning) more 

accurate than with the previous 8000 Hz scheme. 

The original demonstration of WINMOR at the 2008 DCC used only Reed-Solomon block type 

Forward Error Correction (FEC). While this was efficient and helped it did not achieve the degree of 

robustness desired or comparable to modes like Pactor 2 and 3.  The solution for this was to leverage 

from the same technology used to implement telephone modems. This bandwidth-efficient signaling 

scheme is named Trellis Code Modulation or TCM [4]. 

Trellis code modulation adds one additional bit to each PSK symbol doubling the number of 

constellation sites. While this “tighter” constellation increases the raw bit error rate (assuming constant 

transmit power) with proper coding of the added bit and optimized bit to phase mapping a significant 

net improvement in bit error rate over the uncoded case can be achieved.  To keep the software 

implementation manageable and to capitalize on the efficient Viterbi decoding algorithm WINMOR 

actually uses what is called Pragmatic Trellis Code Modulation [5].  PTCM uses a standard 

convolutional code in place of the slightly more optimum Ungerboeck code. WINMOR uses the 

standard R=1/2, K=7 (NASA Voyager) convolutional code which is compatible with the Viterbi 

decoder. This combination yields a coding gain within a couple of tenths of a dB of the optimum 

Ungerboeck code of the same length. The public Viterbi decoder C code of Phil Karn, KA9Q 

simplified the software task though it was still necessary to translate the C code to VB.NET for 

stability in our VB.NET application.  To understand how the Trellis code modulation works we can 

look at the example of WINMOR’s 8PSK mode. In WINMOR 8PSK two information (user) bits are 

transmitted per 8PSK symbol. One of the user bits U1 is used to generate (using the convolutional 

encoder) two Code bits, C0 and C1.  The protocol then sends three bits (the uncoded user bit U0,  plus 

the two convolutional code bits C0 and C1) as a 3 bit 8PSK symbol.  The uncoded bit U0 selects either 

0 or 180 degrees to be added to the phase of the coded bits. This mapping of the uncoded bits to phase 

angle is critical in TCM. Figure 1 shows the complete 8PSK PTCM encoder used by WINMOR.  



Weak R-S

Encoding

247,255 (4)

Shortened

to 40 bytes

Strong R-S

Encoding

217,255 (19)

Shortened to 

40 bytes

(Parity Only)

Frame Data: ( Payload + overhead)

S

E

L

E

C

T

O

R

Weak/Strong

Selection

(toggles with each frame repeat)

Reed-Solomon Encoding

Symbol

Mapping

4 symbols

Per byte

0 Degrees

180 Degrees

U0

M

U

X

U1

R=1/2, K = 7

(Voyager)

Viterbi Encoder

C0, C1

Symbol to

Angle Mapping

0, 45, 90,135 

Degrees

(Gray code) 

+

0, 180 degrees

8PSK To 

Modulator

WINMOR 8PSK Pragmatic Trellis Code Modulation (PTCM)

Uncoded 2 bit

Symbol  U

Viterbi Encoding

Encoding 

 

   Figure 1 WINMOR 8PSK PTCM Encoder 

The Decoding operation is somewhat more complex. Recall that the received demodulated differential 

phase information is corrupted by noise, Doppler, phase distortion, and frequency offset induced 

errors. The solution developed to decode this “noisy” PTCM is to use a mechanism to first null out the 

uncoded bit (U0 in the encoding diagram) and then process the coded bits through a conventional 

Viterbi decoder. The contribution of the uncoded bit is removed by multiplying the demodulated phase 

by 2 modulo 360 degrees. Once the soft decision Viterbi decoding [6] is complete on the doubled 

phase angle we have the best estimate of the coded bits C0 and C1.  Those decoded  bits are then  

“recoded” back to phase angles using the same mapping as the encoder and are then subtracted from 

the raw phase of the received signal to yield (now) the best estimate of the uncoded bit U0. Since the 

uncoded bit phases are widely “spaced” (180 degrees for 8PSK) they have an inherently lower bit error 

rate and don’t require the strong FEC of the Viterbi decoder.  A decoder which implements this in 

WINMOR for 8PSK is shown in Fig 2. 

As Figures 1 and 2 also show, WINMOR layers this Viterbi encoded inner layer with an outer layer of 

weak or strong Reed-Solomon block encoding for additional FEC strength.  This layering of block 

encoding outside convolutional encoding is a well used technique in advanced codecs which 

capitalizes on the best capabilities of each code type yielding good efficiency and error rates lower 

than what could be achieved using either code by itself. 



WINMOR 8PSK Pragmatic Trellis Code Modulation (PTCM)

Decoding 
Demodulated 8PSK Differential Phase 

From DSP ( 0 to 360 degrees, with noise)

Angle

Multiplier

2x 

Modulo 360

Degrees
(nullifies  

uncoded 

phase) 

Angle to Soft

I and Q

Mapping

[8 bit soft I & Q

resolution]

R=1/2, K = 7

(Voyager)

Viterbi Decoder

Viterbi Decoding

+

U1

R=1/2, K = 7

(Voyager)

Viterbi Encoder

Viterbi Encoding

C0, C1

Symbol to

Angle Mapping

0, 45, 90,135 

Degrees

(Gray code) 

Comparator

90

Degrees

Most Likely Estimate of

Viterbi Encoded Phase

U0

Same as Encoding

2 bit Symbol to 

Byte packing Weak/Strong 

Reed-Solomon 

Decoder

U1

Weak/Strong

Frame toggle

Best estimate

of Uncoded

Phase

+

-

Data

Weak RS

Strong RS

Final Frame Data: 

 

Figure  2  WINMOR 8PSK PTCM Decoder 

Similar PTCM mechanisms are used in WINMOR’s 4PSK and 16PSK modes but using 0 or 2 uncoded 

bits/symbol respectively. While the design and implementation of the PTCM was probably the most 

challenging part of the WINMOR DSP code there were still “accounting and logic” problems 

remaining like making the protocol bulletproof and insuring reliable repeat and reconstruction of the 

ARQ packets. 

Making an ARQ protocol work over a noisy half-duplex HF channel is challenging because it requires 

that each end keep track of which station is the Information Sending Station (ISS) and which is the 

Information Receiving Station (IRS). In a typical message forwarding scenario it is common for the 

IRS and the ISS to exchange roles several times and this IRS <> ISS exchange must be bulletproof. If 

poor propagation would ever cause both stations to accidentally become the ISS or IRS the protocol 

would fail. To implement this requires fairly complex logic and a state machine which can handle 

every combination of missed command, data or acknowledge.  The WINMOR state diagram shown in 

Figure 3 came about after many iterations and extensive testing over all conceivable conditions. 



          

IRS
ISS

Disconnected

IRStoISS

Disconnecting

Offline
Sound card

Disabled

Connecting

Repeat 

Connect

Request

DisconnectREQ

Received

ACK(BW)

Received

Repeat BREAK

ACK received

Answer with ACK,

Disconnect REQ

Or BREAK 

Timeout

BREAK received

Send ACK

IDLE received with

Outbound pending

Or BREAK

Send DATA,

IDLE or OVER 

Process ACK 

Reply

Accepted 

Connect REQ

Send ACK(BW)

Send

Disconnect REQ

(repeat up to 4x)

Any

State

ACK Received

or 4 repeats

Disconnect REQ 

Received, 

Send ACK

Any

State

WINMOR Connected Protocol States

Initiate 

Connection

Timeout

ISS, ISS ModeShift,

IRS, IRS ModeShift,

and IRStoISS states

ISS ModeShift

PSN

Rcvd

Send Req

Last Sequenced

PSN 

Updated Dec 21, 2009

IRS ModeShift

Req Last PSN
Data Rcvd

Connect

Pending

Connect Frame

Detected
Rejected

Send  BREAK

IRS States

ISS States

Transition States

Unconnected States

Send ID

ID Sent

 

  Figure 3.  The WINMOR Protocol state diagram 

 

One of the final challenges in the path of beta testing WINMOR was interfacing WINMOR and RMS 

Express to the many different sound cards and radios. While radio control isn’t an absolute necessity it 

was very helpful during beta testing to quickly and accurately set the radios to specific beta test 

frequencies (what we often called “watering holes”). We became convinced that no two radio models 

are equivalent when it comes to computer control! And while all sound cards and interfaces perform 

the same basic functions there are unique ways each might key the transmitter and adjust drive and 

receive levels that have to be accommodated and documented.  

 

Deploying and Providing Access to the WINMOR Protocol 

As the beta testing progressed and developers and beta testers gained confidence in the new protocol 

one issue repeatedly came up.  To be a truly viable protocol we needed a way to distribute the 

WINMOR protocol and make it easy for other application developers to use. While the public 

specification for WINMOR provides all the information necessary to write  the WINMOR codec the 

complexity of the real-time code and the challenge of verifying each implementation of the protocol 

made it unlikely many programmers could easily duplicate or integrate the WINMOR TNC code.  The 

solution to this was what we called a virtual TNC.  This virtual TNC is a stand-along program which 

implements the WINMOR HF modem making it appear similar to a conventional hardware TNC.  The 



Virtual TNC has ports through which commands and data are passed like hardware TNCs. The 

WINMOR TNC even has a “front panel” which emulates the “flashing LEDs” of a hardware TNC as 

shown in Figure 4. 

 

  Figure  4.  The virtual WINMOR TNC “front panel” 

Implementing the Virtual TNC required adapting all the RMS Express WINMOR code into a stand-

alone package that interfaced via simple TCP commands and data. .  In the virtual TNC software it was 

easy to implement features too costly on hardware TNCs like a waterfall display and a constellation 

diagram. These allow the operator to quickly identify signals and see the quality of the received nPSK 

or 4FSK symbols. Once this effort was completed and the virtual TNC documented it became straight 

forward for other developers to integrate the WINMOR protocol into other applications. To date there 

have been several successful integration efforts based on this virtual WINMOR TNC.  At the time of 

this writing (June 2010) this includes: 

 RMS Express, Paclink, and RMS WINMOR  by Vic Poor and Rick Muething 

 BPQ32 BBS and Switch by John Wiseman, G8BPQ 

 SNOS (Protocol linking)  by Hank Oredson, W0RLI 

 AT-AUTO Keyboard client by Howard Zuckerman, N3ZH. 

 

Spinoffs…Adapting and optimizing WINMOR for other applications 

Two things became evident during the beta testing of WINMOR: 

1) To get good solid performance on HF you need to optimize virtually everything.  

2) There are always some innovative hams thinking up new applications and uses for 

something that exists. 



This was the case with the WINMOR virtual TNC. For example some wanted to use it on VHF and 

through voice repeaters.  Some wanted a keyboard chat mode for fun QSO’s when they weren’t 

forwarding messages. While both of these examples could be accommodated with the existing 

WINMOR TNC the results may not be comparable to a protocol optimized specifically for a specific 

frequency, bandwidth, mode, or operating activity.  The flexibility of software and the way the Virtual 

WINMOR TNC is partitioned and implemented make it relatively easy to change parameters like 

bandwidths, modulation modes, symbol rates, carrier placement, error coding etc.  This means that it is 

no longer necessary to live with sub optimal solutions that were necessary in the days when we had to 

adapt those surplus teletype machines or Bell 300/1200 baud modems. One recent example of this 

“application targeted protocol” is a new keyboard oriented protocol called V4 which uses the 

WINMOR TNC concept to implement a simple yet very robust keyboard compatible non ARQ modem 

that is optimized for narrow bandwidth (200 Hz) applications at normal keyboard typing speeds (55 

WPM). V4 uses a novel application of Viterbi encoded 4FSK for excellent robustness even with poor 

multipath propagation. As we have the opportunity to explore and adapt WINMOR to other 

applications it is likely we’ll see more of these “targeted protocols” spring up and be adopted. 

Summary  

Driving a new sound card protocol from demonstration through deployment turned out to be a bumpier 

road than initially anticipated.  But like many difficult projects it is the entire process, the roadblocks, 

the setbacks and the solutions that become the real catalysts for progress.  I am reminded of the words 

the great inventor Thomas Edison spoke when asked by a reporter, “Weren’t you frustrated at the 

number of failures you experienced during your attempts at inventing the electric light?”  ”No, not at 

all”, Edison quipped sharply, “I now know 150 different filaments that don’t work!” 

References: 

 [1] WINMOR … A Sound Card ARQ Mode for Winlink HF Digital Messaging; Rick Muething, 

KN6KB/AAA9WK;  27
th

 ARRL and TAPR DCC 2008 

[2] SCAMP (Sound Card Amateur Message Protocol); Rick Muething, KN6KB;  23
rd

 ARRL and 

TAPR DCC 2004 

[3] RMS Express = A Multimode Winlink 2000 User Client Program; Vic Poor, W5SMM/AAA9WL; 

29
th

 ARRL and TAPR DCC 2010 

 [4] Trellis Coded Modulation Tutorial; Charan Langton, 2004. 

http://www.complextoreal.com/chapters/tcm.pdf  

[5] A Pragmatic Approach to Trellis-Coded Modulation; A. Viterbi, J. Wolf, E. Zejavo, R.Padovani; 

IEEE Communications Magazine July 1989. 

[6] Data Recovery in Differentially Encoded Quadrature Phase Shift Keying; J. Bard, M. Nezami, M. 

Diaz; Mnemonics Inc. Melbourne, FL. 

http://www.complextoreal.com/chapters/tcm.pdf

