

An Introduction to Amateur Satellites

$\bullet \bullet \bullet \bullet \bullet \bullet$

Presented by EMILY CLARKE WØEEC@AMSAT.ORG

This presentation available online at http://www.PlanetEmily.com/W0EEC

About Your Presenter

- Website: http://www.PlanetEmily.com
- AMSAT: SF Bay Area Coordinator
- Project OSCAR: VP, Member of the Board of Directors
- Licensed as an amateur in February 2003
- Over 6400 satellite contacts
- Awards include VUCC, W4AMI, WAC
- US, AMSAT winner of AO-40 Birthday Bash contest
- Also a member of ARCA, MSARC

What Is An OSCAR

An OSCAR is an Orbiting Satellite Carrying Amateur Radio

- Built for non-commercial purposes
- Originally built by Project OSCAR members in garages in Silicon Valley
- Now built by and/or funded by members of AMSAT and AMSAT affiliates
- Originally a "bleep sat" but now carry sophisticated repeaters or transponders
- Are encouraged to carry sensors and other scientific experiments

Chuck Towns K6LFH in his garage with OSCAR-II

Why Use Amateur Satellites?

Traditional Shortwave	Amateur Satellites	
Available when bands are open	Available when in range	
Wide bandwidth	Bandwidth is satellite dependent	
Band openings unpredictable	Satellites have timely orbits	
Range depends on ionosphere height	Range depends on satellite height	
If you can hear it you can work it	If you can hear it you can work it	
Requires large property for antennas	Can be worked with as little as an HT	
Turning radius of Yagis is large	Turning radius of Yagis is small	
Large load bearing azimuth rotator	None or small az/el rotators	
Modes depend on band/bandplan	Modes depend on satellite design	
Beacons aid propagation	Beacons herald satellite availability	
General or better license	Technican license	

Copyright©Emily Clarke 2004 - All Rights Reserved

FM Repeater vs Linear Transponder

Some Important Terms

The **path** a satellite travels around the earth Orbit Doppler A **shift** in frequency caused by satellite motion A satellite in Low Earth Orbit (400-2000km) LEO A satellite in a **H**igh **E**arth **O**rbit (> 20,000km) HEO A satellite in a **Geo**synchronous orbit (35,680km) GEO Uplink The frequency used to **transmit** to a satellite Downlink ⇒ The frequency used to **receive** a satellite **Footprint** ⇒ A circular area where the satellite is **line of sight** Apogee When the satellite is at it's **highest** alititude Perigee When the satellite is at it's **lowest** altitude Inclination The **angle** of the satellite where equator = zero

The Van Allen Belts

- The Van Allen belts are regions of protons and electrons, held captive by the magnetic influence of the Earth
- Radiation is concentrated and closest to the earth at the poles (aurora)
- Satellite orbits are designed to spend as little time as possible in the belts or avoid them completely
- Satellites that travel in and around the belts may be damaged
- Levels change because of magnetic storms, nuclear explosions

10000-65000km 650-6300km 145000-20000km 2000-5000km

Basic Orbit Comparison

×

LEO - 90-120 minutes per orbit vs AO-40 19.6 hours per orbit

Graphic courtesy of MacDoppler Pro

Copyright©Emily Clarke 2004 - All Rights Reserved

Satellite Orbit Tracks

- Artificial satellites travel in an arc determined by height, eccentricity, and inclination.
- Inclination can range from 0° (equitorial) to 90° (polar)
- The time the satellite is visible (in range) to an observer is called a satellite "**pass**". During the pass, you are in the "**footprint**"
- The altitude of the satellite above the earth determines the length of the orbit and pass or "time on station" and mutual coverage

Orbit Type – Sun Synchronous

- Passes near the pole
- Spends time in sun and eclipse depending on altitude
- Available at the same time of day every day.
- Batteries required when eclipsed
- All parts of planet receive equal access

FO-29, AO-51

Orbit Type – Dawn to Dusk

- Passes near the pole
- Spends most of the time in sun and very little in eclipse
- Batteries required when in eclipse but very low charge/discharge rates
- All parts of planet receive equal access

AO-7, AO-27

Orbit Type – Inclined

- Circular orbit that is equally inclined in northern and southern hemispheres
- Spends most of the time in sun at some times, and most in eclipse at other times.
- Batteries required when in eclipse
- All parts of planet receive equal access

SO-41, SO-50, RS-15, ISS

Orbit Type – Molniya

- Highly elliptical orbit with apogee inclined to target location
- Spends most of the time in sun
- Batteries required when in eclipse
- All parts of planet do not receive equal access

AO-40 (Planned), Eagle, Express

Satellite Coverage

FO-29 Coverage - Continental

AO-40 Coverage - Hemispherical

High Earth Orbit (HEO)

- HEOs are satellites that orbit the earth at distances greater than 35,000km
- Pass times range from 12-18 hours
- Linear transponder (SSB/CW) only
- Inclined elliptical or geosynchronous orbit
- Operates over many bands
- AO-40 currently suffering from a low battery bus condition

Low Earth Orbiting (LEO)

• LEOs are satellites that are orbiting

- LEOs are satellites that are orbiting the earth from 400-2000 km.
- Pass times range from 12 to 22 minutes
- Linear Transponder (SSB/CW) or FM repeater
- Typically operate in the 2m/70cm bands
- Polar or high inclination orbit
- FM LEOs also referred to as the "easy sats"

AMSAT-ECHO (AO-51)

AMSAT OSCAR - 7

- Launched Nov 1974 into sun-synchronous orbit
- Mode A Linear Transponder
 - 29.450 USB/CW Downlink
 - 145.900 USB/CW Uplink
- Mode B Linear Transponder
 - 145.950 USB/CW Downlink
 - 432.150 LSB/CW Uplink
- Battery failure in 1981, resurrected 2002
- Operational only in sunlight (no batteries)

Fuji-OSCAR 29 (JAS-2)

- Built by Japan Amateur Radio League
- Launched July 1996 into a polar orbit
- Mode JA Linear Transponder
 - 145.900-146.000 LSB/CW Uplink
 - 435.800-435.900 USB/CW Downlink
 - Inverting
- Digital Store and Forward BBS (non-operational)
- Digitalker

AMRAD OSCAR – 27

- ×
- Piggy-backed on a commercial satellite Eyesat-1
- Launched into sun synchronous orbit September 1993
- Single Channel FM Repeater
 - 145.850 Uplink
 - 436.795 Downlink
- Turned on and off by timer
- Only on for 6 minutes on south to north pass over northern hemisphere
- Turned off mid-summer and mid-winter when in eclipse at poles

Saudisat 1C (SO-50)

• Launched into high inclined orbit December 2002

- Single Channel FM Repeater
 - 145.850 uplink
 - 436.795 downlink
- Must be manually turned on by a control operator
- Requires PL-67 to access the repeater

AMSAT Echo

- Launched June 2004 into Sun Synchronous Orbit
- FM Voice Repeater
 - 435.225 Downlink
 - 145.920 Uplink (requires PL-67 tone)
- 9600bps AX.25 FSK Digital
 - 435.150 Downlink with telemetry
 - 145.860 Uplink
- Additional SSB/CW
 - 10m 23cm Receive
 - 13cm Transmitter
- PSK-31 Mode

APRS Digipeaters

- PacSAT (AO-16)
- Sapphire (NO-45)
- ISS (Zarya)

Bulletin Boards

- UOSat-5 (UO-22)
- Sapphire (NO-45)
- ISS (Zarya)
- GerwinSat (GO-32)
- TuingSat (MO-46)
- Echo (AO-51)

Sapphire (NO-45)

Cubesats

×

- Cubesats are picosatellites housed in 10cm cubes common to all designs.
- They share a common launcher called a P-POD that can launch 3 or 6 satellites at one time.
- Developed at Stanford University in Palo Alto, California with Cal Poly San Luis Obisbo developing the P-POD.
- Many Cubesats from many countries have been launched (Cute-1, CanX1, XI-IV, AUSat, Quakesat...)
- More to be launched in July 2004.

Operating a Satellite

Satellites don't have the physical space to separate receive and transmit antennae a great distance, so they use different bands

Traditional LEO Modes: Mode A = 10m/2mMode B = 2m/70cmMode J = 70cm/2m New satellite band designations are paired letters, eg U/V, L/S, etc.

C=7.5cm
X=3cm
K=1.5cm
Q=5mm

Minimum Requirements

All mode 2m/70cm radio or Dual VFO HT

- Dual Band Arrow Antenna or high gain whip antenna
- Palm computer with tracking software
- Patience

WØEEC QSOs with WH6BIE via UO-14 from California to Hawaii – 4000km

Ideal Ground Station for LEOs

• Cross beam or circularly polarized Yagi or helical

- Computer tracking system
- Computer controlled AZ-EL rotators
- Full-duplex dual band radio computer controlled tuning
- TNC and Soundcard Interface for TLM and Packet
- APRS Software

Photo courtesy of K6IA

Mast mounted receiver preamps

 (Rule of thumb - it's better to have big ears than a big mouth.)

More Stations

VE7WFG

WB0DRL

KG6IAL

W0EEC

Copyright©Emily Clarke 2004 - All Rights Reserved

Transceiver Choices

- Icom 910H
 - 2m –100W/70cm-75W
 - Optional 23cm
- Yaesu FT-847
 - 2m-50w/70cm 50w
 - HF
- Kenwood TS-2000
 - 2m-100W/70cm-50w
 - HF and Optional 23cm
- Used (FT-736, IC-820/21, IC-970)

WØEEC Shack

Antenna Choices

Antenna selection depends on desired results:

Antenna Type	Half Power Beam Width	Typical Gain (dB)
Monopole	360°x80°	2.5
Dipole	360°x120°	2
Log Periodic	60°x60°	6
Yagi	50x50°	12
Helix	40°x40°	10
Small Dish	30°x30°	18
Large Dish	1°x1°	45

Packet Station

 Packet stations send data to the satellite using a TNC to modulate and demodulate the signals

- May be 1200 bps, but newer satellites like Echo use 9600bps up to 78,400 bps.
- Some just repeat digital packets (digi-peat) or may have a store-and-forward bulletin board system.
- Telemetry is also sent using packet data

Satellite Tracking Programs

PC

- Nova For Windows
- SatPC32 for Windows
- SCRAP

Available at the AMSAT web site!

- Satscape
- Orbitron

MacIntosh

• MacDoppler Pro Contact Dog Park Software

PDA

- PetiTrack for Zaurus
- PocketSat for Palm and PalmPC

Nova for Windows

Echo Telemetry Decoded

Keplerian Elements

A

A0-7

1 07530U 74089B 04140.70617484 -.00000029 00000-0 10000-3 0 2774 2 07530 101.6834 187.8825 0012044 277.9198 82.0507 12.53568957350341

- Keplerian Elements are a mathematical model of a satellites orbit
- Used by tracking programs to predict where the satellite is at a given time
- Need to be updated periodically (esp ISS it can be maneuvered)
- Most tracking programs do this over the internet
- Two formats
 - NORAD Two Line Elements (TLE most common)
 - AMSAT Verbose Format

Other Interesting Software

- MixW, MMSSTV, PSK31 Deluxe and Digipan
- UI-View32 for APRS
- WXToImg for Weather Satellites
- WinPack and WiSP for PacSat operations

NOAA-17 imagery 10/30/2003

Copyright©Emily Clarke 2004 - All Rights Reserved

It is not always necessary to tune your transmitter on FM, but is necessary on SSB to stay on frequency with other stations

Copyright©Emily Clarke 2004 - All Rights Reserved

Dealing with Doppler (AO-7)

- The passband is noisy, so pick a place near 145.950 that is quiet.
- Tune your transmitter so you hear a normal voice on the downlink frequency.
- Adjust your transmitter to keep your receive frequency locked in place.
- If in a net on SSB/CW, keep your receiver tuned to the other stations and make minor changes in your transmitter if needed.

Groundstation Considerations

×

- Invest heavily in your receive setup and use preamps as needed
- Use filters in Mode J (V/U) to eliminate desense
- Use flexible low-loss coax (LMR-240 Ultra Flex, Belden 9913) on booms and rotatable fixtures
- Keep coax runs as short as possible
- Use circular polarization whenever possible
- Keep everything grounded including computer equipment

General Operating Procedures

• Liston for the estallite because or other operators

- Listen for the satellite beacon or other operators before transmitting
- Work full duplex with headphones so you can monitor the quality of your own downlink
- Keep your squelch off and your DSP on
- Use as little power as needed to complete the QSO (especially on AO-7)
- When pileups occur, give your information (callsign, gridsquare) quickly
- Be courteous to other operators

Future Satellite Launches

• VUSat: AMSAT-India

- SSB/CW transponder polar LEO Launch Sept, 2004
- BLUESat: University of New South Wales
 - Digital Store and Forward LEO (PACSat) (2005)
- PCSat-2: US Naval Academy
 - APRS Digipeater on ISS delayed until Shuttle in service
- P3E "Express": AMSAT-DL
 - SSB/CW multimode linear transponder HEO (2006)
- Eagle: AMSAT-NA
 - SSB/CW multimode linear transponder HEO (2006/7)

P3E Concept Drawing courtesy of AMSAT-DL

About Project Oscar

- Website: http://www.projectoscar.net
- Our mission is to advocate and promote the use of amateur satellites
- Incorporated in 1960 by hams in Silicon Valley
- Built the first four OSCAR satellites
- International, primarily based in Silicon Valley
- Membership open to hams actively operating and advocating amateur satellites

About AMSAT

- Website: http://www.amsat.org
- Non-profit foundation founded February 1969 in Washington D.C.
- Mission is to develop and provide satellites and technology used or useful for amateur radio
- International with member organizations in over 32 countries
- Launching a new FM satellite called Echo in June 2004 (contributions gladly accepted)

Join AMSAT

- AMSAT membership starts at \$39 per year
- Membership includes subscription to the AMSAT Journal and discounts on publications, software and apparel
- Your membership helps to support the amateur satellite program
- Contributions for specific satellites is greatly appreciated (and tax deductible)

Questions and Answers

PROMOTING AMAIEUR SATELLING PROMOTING AMAIEUR SATELLING DECT SCAR MANS HAVING FIN

AMSAT