Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

VISUAUDSP=7 5.0
Getting Started Guide

Revision 3.0, August 2007

Part Number
82-000420-01

ANALOG
DEVICES

Copyright Information

©2007 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices icon bar and logo, the CROSSCORE logo,
Visual DSP++, Blackfin, SHARC, TigerSHARC, and EZ-KIT Lite are

registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS

PREFACE

Purpose of This Manualccoooiiiiiiiiiiiiiiecce vii
Intended AUdIENCEouviiiiiiiiiiiiie e vii
Manual CONTENES couvvuiiiiiiie ittt e e e viii
What’s New in This Manualcooovviiiiiiiiiiiiiiiiieeeeeeeeeeee, viii
Technical or Customer SUPPOIT ..ocveiiiiiiiiiiiiiiiiciiic e ix
Supported ProCessorscooueiiriiieriiieriiieeiieeeieee e X
Product INformationcoooviiuuiiiieeieeieiiiieeeeee e e e e xi
MyAnalog.comocoiiiiiiiiiiiiiiiicic e xi
Processor Product Informationcccoeeiiivieiiiiiiiiieiiiiieeeeeeeinnnn. xii
Related DoOCUMENTS ..ooovvviniiiiiiieeciieee e xii
Online Technical Documentationcceeeeeiviieeeeiiiiieeeeeninn. xiii
Accessing Documentation From VisualDSP++ ...cccooiieeinen. Xiv
Accessing Documentation From Windowsccccceiniiiins Xiv
Accessing Documentation From the Webcc.cooi. XV
Printed Manualsccoooovuiiiiiiiiiiiiee e XV
Hardware Tools Manualsccooeeiiiiiiiiiiiiiiiiiieeeeee XV
Processor Manualsoooveeiiiiiiiiiiiiiiiie e XV

Data SREets covvvuniiiiiee e XV

VisualDSP++ 5.0 Getting Started Guide

11

CONTENTS

Notation CONVENtIONScccuiiiiiiiiiiiiiiiiiiiie e Xvi
FEATURES AND TOOLS
VisualDSP++ Featuresooeiiiiiiiiiiiiiiiiiiiiiiicceeiiee e 1-1
Code Development Toolsccovuiiiniiiiniiiiiiiiiicicce e 1-4
Connecting to a Debug Sessioncccceviiiiiiiiiiiiiiiniinnn, 1-6
BASIC TUTORIAL
OVEIVIEW eeiiiiiiiiiiiiiiiiiiiiietetete ettt ettt ettt e e e e e e e e e e e e eeees 2-1
Exercise One: Building and Running a C Programccccceevueeenne 2-3
Step 1: Start Visual DSP++ and Open a Projectccceeeeiiin. 2-3
Step 2: Build the dotprodc Projectooovvvieniiiiniiiiiiiiiiieenne 2-7
Step 3: Run the Programccocoiiiiiiiiniiiiiiiic e, 2-9
Step 4: Run dotprodceeeeiviiiiiiiiiiiiiiiiiiiicceeecciecc 2-14
Exercise Two: Modifying a C Program to Call an Assembly Language
Routine ... 2-15
Step 1: Create a New Projectcccciiiiiiiiiiiiiiiiii, 2-15
Step 2: Add Source Files to dot_product_asmcccccuveeeneeee 2-21
Step 3: Modify the Project Source Filescccoceevviiiiniiinnnnenn. 2-22
Step 4: Use the Expert Linker to Modify dot_prod_asm.ldf 2-25
Step 5: Rebuild and Run dot_product_asmccccoeuveernneene 2-29
Exercise Three: Plotting Datacoocvveiriiiiiniiiiniiiciiiceiecenieens 2-31
Step 1: Load the FIR Programcccccocviiiiiiiiiniiiniinnnnne 2-31
Step 2: Open a Plot Windowcccoovviiiiiiiniiiniiiciiecee, 2-33
Step 3: Run the FIR Program and View the Data 2-37
Exercise Four: Linear Profilingccocociiiiiinii. 2-45

iv VisualDSP++ 5.0 Getting Started Guide

CONTENTS

Step 1: Load the FIR Programcccccevviiiiiiiiiiniiiniiinnne, 2-45
Step 2: Open the Profiling Windowcccccccoviviiniiieniicnnne. 2-46
Step 3: Collect and Examine the Linear Profile Data 2-48

ADVANCED TUTORIAL

OVEIVIEW .eiiiiiiiiiiiiiiiiiiii e 3-1
Exercise One: Using Profile-Guided Optimizationcccccccceeueeens 3-2
Step 1: Load the Projectcovvveiriiiiiiiiiiiiiiiiiciccece 3-4
Step 2: Configure a Data Setcccoovvieviiiiiiiniiiiiiiciciieccieeee, 3-6
Step 3: Attach an Input Streamcocoeiiiiiiiiiii 3-11
Step 4: Configure Additional Data Setscoovveirniiiiniicennnen. 3-16
Step 5: Create PGO Files and Optimize the Program 3-18
Step 6: Compare Execution Timescccoeeiiiiiiiiiiiennnnnnen. 3-19
Exercise Two: Using Background Telemetry Channel 3-23
Running the BTC Assembly Democcccooviiiiiiiininnn. 3-23
Step 1: Load the BTC_AsmDemo Projectccocuveeruneennee. 3-24

Step 2: Examine the BTC Commandscccceeenuieennneennee. 3-25

Step 3: Set Up the BTC Memory Window and View Data . 3-28
Running the BTC FFT Demo ...ccccvvevviiiiniiiiiiieniiccniecee, 3-36
Step 1: Build the FFT Demo ..c.cccooviiiiniiiiniiiiiiiiciiece 3-37

Step 2: Plot BTC Dataccoovviiiiiiiiiiiiiiiiiicceniiiccceen 3-38

Step 3: Record and Analyze BTC Dataccocuveeviiiinnnnennee. 3-43

INDEX

VisualDSP++ 5.0 Getting Started Guide v

CONTENTS

vi

Visual DSP++ 5.0 Getting Started Guide

PREFACE

Thank you for purchasing Analog Devices, Inc. development software for
signal processing applications.

Purpose of This Manual

The VisualDSP++ Getting Started Guide provides basic and advanced
tutorials that highlight many VisualDSP++ features. By completing the
step-by-step procedures, you will become familiar with the VisualDSP++
environment and learn how to use these features in your own digital signal
processing (DSP) development projects.

Intended Audience

The primary audience for this manual is a programmer who is familiar
with Analog Devices processors. This manual assumes that the audience
has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices
processors can use this manual but should supplement it with other texts
(such as the ADSP-BF533 Blackfin Processor Hardware Reference that
includes information about the ADSP-BF531 and ADSP-BF532

processors.

Programmers who are unfamiliar with Visual DSP++ should refer to the
Visual DSP++ online Help and user’s or getting started guides. For the
locations of these documents, see “Related Documents”.

Visual DSP++ 5.0 Getting Started Guide vii

Manual Contents

Manual Contents

This manual consists of:

Chapter 1, “Features and Tools”

Provides an overview of VisualDSP++ features and code
development tools

Chapter 2, “Basic Tutorial”

Provides step-by-step instructions for creating sessions, and for
building and debugging projects by using examples of C/C++ and

assembly sources.

The tutorial is organized to follow the steps that you take in
developing a typical programming project. Before you begin actual
programming, you should be familiar with the architecture of your
particular processor and the other software development tools.

Chapter 3, “Advanced Tutorial””

Provides step-by-step instructions for using profile-guided
optimization (PGO) and background telemetry channel (BTC)

What’s New in This Manual

This manual contains updated example screens and procedures for the

Visual DSP++ 5.0 integrated development and debugging environment
(IDDE).

Viil

Visual DSP++ 5.0 Getting Started Guide

Preface

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following

ways:

Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

E-mail tools questions to
processor.tools.support@analog.com

E-mail processor questions to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

Phone questions to 1-800-ANALOGD

Contact your Analog Devices, Inc. local sales office or authorized
distributor

Send questions by mail to:
Analog Devices, Inc.
One Technology Way

P.0. Box 9106

Norwood, MA 02062-9106
USA

Supported Processors

The following is the list of Analog Devices, Inc. processors supported in

VisualDSP++ 5.0.

Visual DSP++ 5.0 Getting Started Guide ix

http://www.analog.com/processors/technicalSupport
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Supported Processors

TigerSHARC (ADSP-TSxxx) Processors

The name “TigerSHARC? refers to a family of floating-point and
fixed-point [8-bit, 16-bit, and 32-bit] processors. VisualDSP++ currently
supports the following TigerSHARC processors:

ADSP-TS101 ADSP-TS201

ADSP-TS202 ADSP-TS203

SHARC (ADSP-21xxx) Processors
The name “SHARC?” refers to a family of high-performance, 32-bit,

floating-point processors that can be used in speech, sound, graphics, and

imaging applications. VisualDSP++ currently supports the following
SHARC processors:

ADSP-21020 ADSP-21060 ADSP-21061 ADSP-21062
ADSP-21065L ADSP-21160 ADSP-21161 ADSP-21261
ADSP-21262 ADSP-21266 ADSP-21267 ADSP-21362
ADSP-21363 ADSP-21364 ADSP-21365 ADSP-21366
ADSP-21367 ADSP-21368 ADSP-21369 ADSP-21371
ADSP-21375

Blackfin (ADSP-BFxxx) Processors

The name “Blackfin” refers to a family of 16-bit, embedded processors.
VisualDSP++ currently supports the following Blackfin processors:

ADSP-BF531 ADSP-BF532
ADSP-BF533 ADSP-BF535
ADSP-BF561 ADSP-BF534
ADSP-BF536 ADSP-BF537
ADSP-BF538 ADSP-BF539
ADSP-BF522 ADSP-BF525

Visual DSP++ 5.0 Getting Started Guide

Preface

ADSP-BF527 ADSP-BF542
ADSP-BF544 ADSP-BF548
ADSP-BF549

Product Information

You can obtain product information from the Analog Devices website,

from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com

MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

Visual DSP++ 5.0 Getting Started Guide xi

http://www.analog.com
http://www.myanalog.com

Product Information

Processor Product Information

For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

Related Documents

For information on product related development software, see these

publications:

VisualDSP++ User’s Guide

VisualDSP++ Assembler and Preprocessor Manual
VisualDSP++ Run-Time Library Manual for SHARC Processors
VisualDSP++ Licensing Guide

VisualDSP++ C/C++ Compiler Manual for SHARC Processors

VisualDSP++ C/C++ Compiler and Library Manual for
TigerSHARC Processors

Xil

Visual DSP++ 5.0 Getting Started Guide

http://www.analog.com/processors
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Preface

* VisualDSP++ C/C++ Compiler and Library Manual for Blackfin

Processors
* VisualDSP++ Linker and Utilities Manual
* VisualDSP++ Loader Manual
* Device Drivers and System Services Manual for Blackfin Processors
* VisualDSP++ Product Release Bulletin
o VisualDSP++ Kernel (VDK) User’s Guide
* VisualDSP++ Quick Installation Reference Card

For hardware information, refer to your processor’s hardware reference,
programming reference, or data sheet. All documentation is available
online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:
http://www.analog.com/processors/technicalSupport/technicalli-
brary/.

Online Technical Documentation

Online documentation comprises Visual DSP++ Help system and tools
manuals, Dinkum Abridged C++ library and FlexLM network license
manager software documentation. You can easily search across the entire
Visual DSP++ documentation set for any topic of interest. For easy print-
ing, supplementary .pdf files for the tools manuals are also provided.

A description of each documentation file type is as follows.

Visual DSP++ 5.0 Getting Started Guide xiii

http://www.analog.com/processors/technicalSupport/technicalLibrary/
http://www.analog.com/processors/technicalSupport/technicalLibrary/

Product Information

File Description

.chm Help system files and VisualDSP++ tools manuals.

.html Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the . htm1 files require a browser, such as Inter-
net Explorer 6.0 (or higher).

.pdf VisualDSP++ tools manuals in Portable Documentation Format, one . pdf file for
each manual. Viewing and printing the . pdf files require a PDF reader, such as
Adobe Acrobat Reader (4.5 or higher).

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Visual DSP++ installation. Access the online documenta-
tion from the VisualDSP++ environment, Windows® Explorer, or the

Analog Devices Web site.

Accessing Documentation From VisualDSP++

From the Visual DSP++ environment:

Access Visual DSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

Open online Help from context-sensitive user interface items
(toolbar buttons, menu commands, and windows).

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are other
ways to open Visual DSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.chm) are located in the Help folder, and . pdf files are
located in the Docs folder of your Visual DSP++ installation CD-ROM.

X1V

Visual DSP++ 5.0 Getting Started Guide

Preface

Using Windows Explorer

* Double-click the vdsp-help.chnm file, which is the master Help
system, to access all the other .chm files.

* Double-click any file that is part of the Visual DSP++ documenta-
tion set.

Accessing Documentation From the Web

Download manuals at the following Web site:
http://www.analog.com/processors/technicalSupport/technicalli-
brary/.

Select a processor family and book title. Download archive (.zip) files,
one for each manual. Use any archive management software, such as Win-
Zip, to decompress downloaded files.

Printed Manuals

For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

Hardware Tools Manuals

To purchase EZ-KIT Lite® and in-circuit emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product

number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Visual DSP++ 5.0 Getting Started Guide XV

http://www.analog.com/processors/technicalSupport/technicalLibrary/
http://www.analog.com/processors/technicalSupport/technicalLibrary/

Notation Conventions

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at

1-800-ANALOGD (1-800-262-5643); they also can be downloaded from

the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,

check for it on the Web site.

Notation Conventions

Text conventions used in this manual are identified and described as

follows.

Example

Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualAudio environment’s menu system (for example, the Close
command appears on the File menu).

{this | that}

Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that]

Optional items in syntax descriptions appear within brackets and
separated by vertical bars; read the example as an optional this or
that.

[this,..] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

xvi

Visual DSP++ 5.0 Getting Started Guide

Preface

Example

Description

Note: For correct operation, ...

A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this
symbol.

X ©

Caution: Incorrect device operation may result if ...

Caution: Device damage may result if ...

A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

O

Warning: Injury to device users may result if ...

A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for devices
users. In the online version of this book, the word Warning appears
instead of this symbol.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Visual DSP++ 5.0 Getting Started Guide xvii

Notation Conventions

xviil Visual DSP++ 5.0 Getting Started Guide

1 FEATURES AND TOOLS

This chapter contains the following topics.
e “VisualDSP++ Features”
e “Code Development Tools” on page 1-4

* “Connecting to a Debug Session” on page 1-6

VisualDSP++ Features

Visual DSP++ provides these features:

* Extensive editing capabilities. Create and modify source files by
using multiple language syntax highlighting, drag-and-drop, book-
marks, and other standard editing operations. View files generated
by the code development tools.

* Flexible project management. Specify a project definition that
identifies the files, dependencies, and tools that you use to build
projects. Create this project definition once or modify it to meet
changing development needs.

Visual DSP++ 5.0 Getting Started Guide 1-1

VisualDSP++ Features

Easy access to code development tools. Analog Devices provides
these code development tools: C/C++ compiler, assembler, linker,
splitter, and loader. Specify options for these tools by using dialog
boxes instead of complicated command-line scripts. Options that
control how the tools process inputs and generate outputs have a
one-to-one correspondence to command-line switches. Define
options for a single file or for an entire project. Define these
options once or modify them as necessary.

Flexible project build options. Control builds at the file or project
level. Visual DSP++ enables you to build files or projects selectively,
update project dependencies, or incrementally build only the files
that have changed since the previous build. View the status of your
project build in progress. If the build reports an error, double-click
on the file name in the error message to open that source file. Then
correct the error, rebuild the file or project, and start a debug
session.

VisualDSP++ Kernel (VDK) support. Add VDK support to a
project to structure and scale application development. The Kernel
page of the Project window enables you to manipulate events,
event bits, priorities, semaphores, and thread types.

Flexible workspace management. Create up to ten workspaces and
quickly switch between them. Assigning a different project to each
workspace enables you to build and debug multiple projects in a
single session.

Easy movement between debug and build activities. Start the
debug session and move freely between editing, build, and debug
activities.

1-2

Visual DSP++ 5.0 Getting Started Guide

Features and Tools

Figure 1-1 shows the Integrated Development and Debugging
Environment (IDDE).

[»] Analog Devices VisualDSP++ - [Target: ADSP-BF533 ADSP-BF5xx Single Processor Simulator] - [Project : dotprode] - [[Hi[=] E3

File Edit Session View Project Register Memory Debug Seitings Tools Window Help == x|
FH@E 55 (PBR 2 AT MTE AR P ?
Idotprodc L”Debug LI ; b Do Uy
il Gy iy R G s BRI E] BT &S R
Project dotprodedpi || INFEEREEN B|[Disassembly I
Project Group {1 project} int i: T " : I _IJ
: t t = ;
=3y dotprode - e @ [FFA0130C] P1.L = Omlaé 4|
23 Source Fles result[0] = a_dot_b({ = [FFA01310] P1.H = 0=ff90
result[1l] = a_dot_ci = [FFADL1314] R2 = [P1 ++
dotprod_main.c result[2] = a_dot_d(= [FFA01316] [FF + —18] =
(20 Linker Files f S0 ic3: i [FFA01318] B3 = [P1 ++
...... (2] Reader Fles or{ 1=0; i¢3; i+t) [FFAD1314] [FF + -12] 4_|
printf{ "Dot prod [FFA0131C] B2 = [P1 ++
[FFADL31E] [FP + -8] =
T [FFA01320] R1.L = 788 :
[FFA01324] R1.H = -112 ;

i ijecll] 4 < | 2l
ﬂ Load complete. d
J Breakpoint Hit at <ffall7as:

- Loading: "D:“PFrogram File="V¥i=ualDSF 4 5-Blackfin“~Ezanples Tutorial“dot_product_c™

= Load complete.

= Breakpoint Hit at <£fa0130c»

3

=l > hd

S [L [T, console { Buid J |l
Ready |Halted Line 116, Cal 1 [VBScript [NUM 4

Figure 1-1. The VisualDSP++ IDDE

Visual DSP++ reduces debugging time by providing these key features:

* Easy-to-use debugging activities. Debug with one common,
easy-to-use interface for all processor simulators and emulators, or
hardware evaluation and development boards. Switch easily
between these targets.

* Multiple language support. Debug programs written in C, C++, or
assembly, and view your program in machine code. For programs
written in C/C++, you can view the source in C/C++ or mixed

VisualDSP++ 5.0 Getting Started Guide 1-3

Code Development Tools

C/C++ and assembly, and display the values of local variables or
evaluate expressions (global and local) based on the current
context.

Effective debug control. Set breakpoints on symbols and addresses
and then step through the program’s execution to find problems in
coding logic. Set watchpoints (conditional breakpoints) on
registers, stacks, and memory locations to identify when they are
accessed.

Tools for improving performance. Use the trace, profile, and
linear and statistical profiles to identify bottlenecks in your DSP
application and to identify program optimization needs. Use
plotting to view data arrays graphically. Generate interrupts,
outputs, and inputs to simulate real-world application conditions.

Code Development Tools

Code development tools include:

C/C++ compiler

Run-time library with over 100 math, DSP, and C run-time library
routines

Assembler
Linker
Splitter
Loader
Simulator

Emulator (must be purchased separately from Visual DSP++)

1-4

Visual DSP++ 5.0 Getting Started Guide

Features and Tools

These tools enable you to develop applications that take full advantage of
your processor’s architecture.

The Visual DSP++ linker supports multiprocessing, shared memory, and
memory overlays.

The code development tools provide these key features:

* Easy-to-program C, C++, and assembly languages. Program in
C/C++, assembly, or a mix of C/C++ and assembly in one source.
The assembly language is based on an algebraic syntax that is easy
to learn, program, and debug.

* Flexible system definition. Define multiple types of executables for
a single type of processor in one Linker Description File (.1df).
Specify input files, including objects, libraries, shared memory
files, overlay files, and executables.

* Support for overlays, multiprocessors, and shared memory
executables. The linker places code and resolves symbols in multi-
processor memory space for use by multiprocessor systems. The
loader enables you to configure multiple processors with less code
and faster boot time. Create host, link port, and PROM boot
images.

Software and hardware tool kits include context-sensitive Help and
manuals in PDF format.

For details about assembly syntax, refer to the VisualDSP++ 5.0 Assembler
and Preprocessor Manual.

Visual DSP++ 5.0 Getting Started Guide 1-5

Co

nnecting to a Debug Session

Connecting to a Debug Session

DU & | 2% LB o« AACHTI +%5%6 | we
Y ECTY TR 5| 3wk

From the Windows Start menu, navigate to the VisualDSP++ environ-
ment via the Programs menu. After a second or two, the main

Visual DSP++ window appears on the screen. When VisualDSP++
launches for the first time, it does not connect to any session (Figure 1-2).

[-

[[FFADDDOD] F

[FEADDDO4] PO.E = OxEfcO
[FFAUDDOE] RO.L = 0 ;
[FFADDDOC] BL = W [PO |
[FFAODDOE] SSYNC :
[FFAODDIO] W [B0] = RO

no14] W[BOO] - RO

0016] SSYNC |

0018] PO.L = Dx730
FFAOD001C) PO.H = Oxffchd
[FFADDDZO] RO.L = 4032 |
[FFAODD24] WV [PO] = RO
[FFADODZ6) SSYNC ©
[FFAODDD2E] PO.L = Dx740 :
[FFADD0C) PO.H = Oxffcd
[FFADOD20)] RO.L = 60 ;

0034] U [P0] = RO |

Figure 1-2. Visual DSP++ Main Window

Visual DSP++ is able to connect to a number of different debug sessions,
where each session has its own aIpplication and benefits. The session types
available with VisualDSP++ are:

e EZ-KIT Lite. This is the dedicated USB connection between the
PC and EZ-KIT Lite board. An EZ-KIT connection is simple to
manage and is part of the EZ-KIT Lite. However, the connection is
available with the kit only. Once your custom hardware board is
available for development, you use an emulator session (described
below) to connect to the custom hardware.

! Third-party software may add additional session types.

1-6

VisualDSP++ 5.0 Getting Started Guide

Features and Tools

* Simulator. This is a software model of the processor. Simulators
offer unique advantages; the first is that no external hardware is
required, a great benefit when using Visual DSP++ on the road.
Furthermore, simulators offer a unique insight to the internal
workings of the processor (pipelines, caches, and more), which is
not possible with hardware-based sessions. The downside is that a
simulator is several orders of magnitude slower than actual hard-
ware. The software model simulates only the processor, making it
difficult to accurately simulate a complex system that involves
more than the processor.

Visual DSP++ includes two types of Blackfin simulators:

a cycle-accurate interpreted simulator and a functional compiled
simulator. A cycle-accurate simulator is a completely accurate
model of the Blackfin processor and allows you to fully visualize
the inner-workings of the processor. The compiled simulator sacri-
fices the detailed view but allows you to simulate much more
quickly, millions of cycles per second, depending on the speed of
your PC.

* Emulator. This is a JTAG emulator, the ideal device for connect-
ing to hardware, giving the best performance and maximum
flexibility. A separate module from the PC and EZ-KIT Lite, an
emulator provides a high-bandwidth connection between the PC
and device being debugged. Currently, Analog Devices offers USB-
and PCI- based emulators. An emulator is required to connect to
any non-EZ-KIT Lite hardware.

* Legacy target. This is a target created in Visual DSP++ 4.0 or a
prior version.

Visual DSP++ 5.0 Getting Started Guide 1-7

Connecting to a Debug Session

1-8 Visual DSP++ 5.0 Getting Started Guide

2 BASIC TUTORIAL

This chapter contains the following topics.
e “Overview” on page 2-1
e “Exercise One: Building and Running a C Program” on page 2-3

* “Exercise Two: Modifying a C Program to Call an Assembly Lan-
guage Routine” on page 2-15

* “Exercise Three: Plotting Data” on page 2-31

* “Exercise Four: Linear Profiling” on page 2-45

Overview

This basic tutorial demonstrates key features and capabilities of the
Visual DSP++ integrated development and debugging environment
(IDDE). The exercises use sample programs written in C and assembly for
Blackfin processors.

You can use different Blackfin processors with only minor changes to the
Linker Description File (.1df) included with each project. Visual DSP++
includes basic Linker Description Files for each processor type in the 1df
folder. For Blackfin processors, the folder’s default installation path is:

Program Files\Analog Devices\VisualDSP 5.0\BTackfin\1df

The source files for these exercises are installed during the VisualDSP++
software installation.

Visual DSP++ 5.0 Getting Started Guide 2-1

Overview

The tutorial contains four exercises:

* In Exercise One, you start up VisualDSP++, build a project
containing C source code, and profile the performance of a C
function.

* In Exercise Two, you create a new project, create a Linker
Description File to link with the assembly routine, rebuild the

project, and profile the performance of the assembly language
routine.

* In Exercise Three, you plot the various waveforms produced by a
Finite Impulse Response (FIR) algorithm.

* In Exercise Four, you use linear profiling to examine the efficiency
of the FIR algorithm used in Exercise Three. Using the collected
linear profile data, you pinpoint the most time-consuming areas of
the algorithm, which are likely to require hand tuning in the
assembly language.

The ADSP-BF5xx Family Simulator and ADSP-BF533 processor are used

for all exercises.

Tip: Become familiar with the VisualDSP++ toolbar buttons, shown in
Figure 2-1. They are shortcuts for menu commands such as Open a file
and Run a program. Toolbar buttons and menu commands that are not
available for tasks are disabled and display in gray.

[»] Analog Devices Visual DSP++ - [Target: ADSP-BF533 ADSP-BFSxx Single Processor Simulator] - [Project: dotprodc] [|O] x|
File Edit Session View Project Hegister Memory Debug Seftings Teols Window Help

MIDEHFES ¥ (§ 2B o= AECHTE AFAK a2
: [oebus e o D o
GBS N gam BPR UK WBEO BORGE

Figure 2-1. VisualDSP++ Toolbar Buttons

2-2 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

VisualDSP++ is a licensed software product. To run the software,
you must have a valid license installed on your system. If you try to
run VisualDSP++ and a license is not installed, a message window

opens to let you add a license. For details about license manage-
ment, see the VisualDSP++ 5.0 User’s Guide or Visual DSP++
online Help.

Exercise One: Building and Running a C
Program

In this exercise, you:
* Start up the Visual DSP++ environment
* Open and build an existing project
* Examine windows and dialog boxes
* Run the program

The sources for this exercise are in the dot_product_c folder. The default
installation path is:

C:\Program Files\Analog Devices\VisualDSP 5.0\Blackfin\Examples\
Tutorialldot_product_c

Step 1: Start VisualDSP++ and Open a Project

To start Visual DSP++ and open a project:

1. Click the Windows Start button and select Programs, Analog
Devices, VisualDSP++ 5.0, and Visual DSP++ Environment.

If you are running Visual DSP++ for the first time, you will not be
connected to a debug target. In Visual DSP++ 5.0, it is possible to
edit and build your code without being connected to a debug target

Visual DSP++ 5.0 Getting Started Guide 2-3

Exercise One: Building and Running a C Program

through a debug session. When you are ready to run and debug
your program, you can quickly connect to a target and disconnect
when you are finished. Doing so eliminates the overhead associated
with the target connection, resulting in a smoother and more
responsive experience.

When you need to connect to a debug session, click the Connect to
Target toolbar button (B)) or choose from the available sessions
listed under Select Session in the Session menu. To create a debug
session, select New Session from the Session menu. This will
launch the Session Wizard, which is covered in more detail later.
See Figure 2-7 on page 2-10.

If you have already run VisualDSP++ and the Reload last project at
startup option is selected on the Project page of the Preferences
dialog box (Settings -> Preferences), VisualDSP++ opens the last
project that you worked on. To close this project, choose Close and
then Project from the File menu, and then click No when
prompted to save the project.

. From the File menu, choose Open and then Project.

VisualDSP++ displays the Open Project dialog box.

. In the Look in box, open the Program Files\Analog Devices

folder and double-click the following subfolders in succession.

VisualDSP 5.0\Blackfin\Examples\Tutorial\ldot_product_c

@ This path is based on the default installation.

2-4

Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

4. Double-click the dotprodc project (.dpj) file.

VisualDSP++ loads the project in the Project window, as shown in
Figure 2-2. The environment displays messages in the Output
window as it processes the project settings and file dependencies.

| ¥ Project I
Figure 2-2. Project Loaded in the Project Window

The dotprodc project comprises two C language source files,
dotprod.c and dotprod_main.c, which define the arrays and
calculate their dot products.

Visual DSP++ 5.0 Getting Started Guide 2-5

Exercise One: Building and Running a C Program

5. From the Settings menu, choose Preferences to open the
Preferences dialog box, shown in Figure 2-3.

Freferences

- [k Colors
[Commands
[k Editor

8 General

- Fh Keyboard
- Plugins
[k Project

.- [Eh Toolbars
-4 Tools

2] %]

% General

—General Preferences

¥ Run to main after load
™ Prompt on target hatt

171} Eriatle pieline display
™ Recydle source windows

¥ Reset processoris)before load | Load executable after build

V¥ Auto-complete commands

[v Dock new windows

[¥ Check extemal file modification
¥ Show sounce on target halt

¥ Restore last session on statup [Enable compiler annotations

—Fonts:
Element:

Output Window Font

Courier

Figure 2-3. Preferences Dialog Box

6. On the General page, under General Preferences, ensure that the

following options are selected.

Run to main after load
Load executable after build

7. Click OK to close the Preferences dialog box.

The Visual DSP++ main window appears. You are now ready to

build the project.

2-6

Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Step 2: Build the dotprodc Project

To build the dotprodc project:
1. From the Project menu, choose Build Project.

Visual DSP++ first checks and updates the project dependencies
and then builds the project by using the project source files.

As the build progresses, the Output window displays status
messages (error and informational) from the tools. For example,
when a tool detects invalid syntax or a missing reference, the tool
reports the error in the Output window.

If you double-click the file name in the error message,

Visual DSP++ opens the source file in an editor window. You can
then edit the source to correct the error, rebuild, and launch the
debug session. If the project build is up-to-date (the files,
dependencies, and options have not changed since the last project
build), no build is performed unless you run the Rebuild All
command. Instead, you see the message “Project is up to date.”
If the build has no errors, a message reports “Build completed
successfully.”

In this example (Figure 2-4) notice that the compiler detects an
undefined identifier and issues the following error in the Build
view of the Output window.

"dotprod_msin.c", line 115 cc0020; error: identifier "itn" is undefined
itn i

1 error detected in the compilation of "dotprod ssin.c".
co3089: fatal error: Compilation failed

Tool failed with exit-exception code: 1.

Build was unsuccessful .

4[4 [*] console }, Build [

Figure 2-4. Example of Error Message

Visual DSP++ 5.0 Getting Started Guide 2-7

Exercise One: Building and Running a C Program

2. Double-click the error message text in the Output window.

Visual DSP++ opens the C source file dotprod_main.c in an editor
window and places the cursor on the line that contains the error
(see Figure 2-5).

[»] Analog Devices VisualDSP++ - [Target: {Not Connected)] - [Project : dotprodc] =] &3
Eile Edit Session View Project Eegister Liemory Debug Seftngs Teols Window Help

i I NSHIS ¥8 (428 o RECHTE 4% I al D
ek LB n e =i =] B
BEd 0LePM 3PF U ERE BE0R0TE

Project Group {1 project)
E-423 Source Fies
dotprod.c

dotprod_main.c

Linker Files

11 Header Files

it

n i
int result[3] = {0}:

result[0]
resultf1]

a_dot_b{ a. b }):
a dot of a, o b

NpProject|
ﬂ "dotprod_main.c", line 115: cc0020: error: identifier "itn" is undefined :I
o itn i
]
=
= 1 error detected in the compilation of "dotprod_main.c". J
= cci089: fatal error: Compilation failed
g5 Tool failed with exit-exception code: 1.
= Build was unsuccessful . LI
S| [T »[*T Console }: Build | e
Ready |Notconnected [Line 115, Col 1 [VBScript [NUM 4

Figure 2-5. Output Window and Editor Window

The editor window in Figure 2-5 shows that the integer variable
declaration int has been misspelled as itn.

3. In the editor window, click on itn and change it to int. Notice
that int is now color coded to signify that it is a valid C keyword.

4. Save the source file by choosing File dotprod_main.c from the
File -> Save menu.

2-8 VisualDSP++ 5.0 Getting Started Guide

Basic Tutorial

5. Build the project again by choosing Build Project from the Project
menu. The project is now built without any errors, as reported in
the Build view of the Output window.

Now that you have built your project successfully, you can run the

example program.

Step 3: Run the Program
In this procedure, you:
* Set up the debug session before running the program
* View debugger windows and dialog boxes

Since you enabled Load executable after build on the General page of the
Preferences dialog box, the executable file dotprodc.dxe is downloaded to
the target automatically. If you are not connected to a debug target, Visu-
alDSP++ will prompt you to connect to one using an existing debug
session (or to create a new debug session). Choose the Select a session or
create a new session option as shown in Figure 2-6.

Mo Session Selected

The requested action reguires a connection to a debug session, but
no session is currently selected. Would you like to:

£ Gonmest bo bhe last sessian

{*" Selact 3 session or create & new session;

[~ Make this the default and don't askme again

oK cancel |

Figure 2-6. No Session Selected

Visual DSP++ 5.0 Getting Started Guide 2-9

Exercise One: Building and Running a C Program

Click OK to create a new session. This will launch the Session Wizard,
shown in Figure 2-7.

Project Wizard

2l x|
Project Information
Choose the project's target processor and output bype,
. !
B Project : Select Processor
Seleck P " Proceszor family: I Blackfin j

f& application Settings

2 Add Startup Code/LDF Processor lypes:

388 Finish Proceszzor I Dezcnption -

I%an.-’-‘-.DSF'-B FE22 Blackfin Processor

I%an.-’-‘-.DSF'-B FE25 Blackfin Processor L
I%an.-’-‘-.DSF'-B FE27 Blackfin Processor

I%an.-’-‘-.DSF'-B Fa3 Blackfin Proceszor (800 MMALCS, B2 bytes
I%an.-’-‘-.DSF'-B Fa3: Blackfin Proceszor (800 MMACS, 84k bytes

I%an.-’-‘-.DSF'-B FR3a Blackfin Proceszor (1512 MMACS, 143K byt
ITi-[Ancn_n CR2A Dlzeb five Brrasene (RONRAH > 137K I—..Ih:m o
4 3

Silicon Revision: I.-'i‘-.ulomatic: j Wiew data zheet. .. |

Tree navigation
Select a page in the tree navigation ko display that page.

< Back Mext » | Finizh I Cancel

Figure 2-7. Session Wizard

The Session Wizard guides you through the process of specifying your
debug session, including the processor, connection type, and platform.

2-10 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

To set up the debug session:

1. On the Select Processor page, select Blackfin as the Processor
family and select ADSP-BF533 under Choose a target processor.
Click Next to continue.

2. On the Select Connection Type page, select Simulator, and click
Next to continue.

3. On the Select Platform page, select ADSP-BF5xx Single Processor
Simulator. In Session name, use the default session name or enter
a more meaningful name of your choosing. Click Next to review
your choices, and then click Finish.

Visual DSP++ closes the Session Wizard, automatically loads your
project’s executable file (dotprodc.dxe), and advances to the main
function of your code (see Figure 2-8).

4. Look at the information in the open windows.

The Output window’s Console page contains messages about the
status of the debug session. In this case, VisualDSP++ reports that
the dotprodc.dxe load is complete.

The Disassembly window displays the assembly code for the
executable. Use the scroll bars to move around the Disassembly
window.

Note that a solid red circle and a yellow arrow appear at the start of
the program labeled “main”. The solid red circle (#) indicates that
a breakpoint is set on that instruction, and the yellow arrow (=*)
indicates that the processor is currently halted at that instruction.
When Visual DSP++ loads your C program, it sets several break-
points automatically. Most of the breakpoints set are used as part
of advanced features of VisualDSP++. There are two breakpoints of

Visual DSP++ 5.0 Getting Started Guide 2-11

Exercise One: Building and Running a C Program

[»] Analog Devices YisualDSP++ - [Target: ADSP-BF533 ADSP-BF5zx Single Processor Simulator] - [Project: dotprodc] M= 3

Edit Session ¥iew Project Register Memory Debug Seftings Tools Window Help
FHIS $9 128 20 MECHTE 4BA% a2

Idotprodc _"Debug _I % UL g by

@@k@n@@u B G o REE (5 DRG [
Project: dotprodc.dpj =%l B dotprod_main.c =l E3 Disassembly: main + 0x4 =%l
Project Group (1 project] void main() I ;I_I
El@ &lemdc { int i nain LI
E-L Source Files | int result[3 [FFAD16A0] LINK 0x18 ;
[Linker Files & [FFallea4] [P1.L = O=lic
“[22 Header Files result[0] [FFAD16AE] P1.H = O=xff90
resuit[%] e [FFADLGAC] RO = [P1] :
result[z] [FFADL6AE] [FP + 12] 4 |
— hd [FFAODL1ERBO] P1.L = 0=x130 ;
o [FFAODLEE4] P1.H = 0=ff90
[FFAODLEEE] RO = [P1] :
[FF4016EA] [FP + -8] =
| [FFADLEBC] P1.L = 0=l134 ;4
S| ijectl 4| | »

Loading: "C:“Program Files“Analog Dewvices“Vi=ualDSP . D\Blackf1n\Examples\TutDr1al_J
Load complete.
Breakpoint Hit at <ffalléad:

P LI
<[] [T console 4 Buid 7 <1l

Ready |Halted |Line 116, Col 1 [wBScript [UK 4

Figure 2-8. Loading dotprodc.dxe

interest for this tutorial, one at the beginning and one at the end of
code execution. Your breakpoint locations may differ slightly from
those shown in the examples in this book.

5. From the Settings menu, choose Breakpoints to view the break-
points set in your program. VisualDSP++ displays the Breakpoints
dialog box, shown in Figure 2-9.

2-12 VisualDSP++ 5.0 Getting Started Guide

Breakpoints

. Automatic

— Breakpoint P .
Break at:
__lib_prog_temm Browse .. |
Expression:
Skip count: Tvpe:
I Softwane ;I
Breakpaint list:
® a __lib_prog_temn -

@z cplb_miss_all_locked

® a _ cplb_miss_without_replacement
® a _ cphb protection_viclation

#® & unknown_sxception_occumed

zt 11 _code cache_enabled when |1 _used for—
zt11_data_s_cache_enabled_when_used_for

'.Iat 11 data b cache enabled when usTd for (2
4 2

QK I Cancel

Basic Tutorial

Figure 2-9. Breakpoints Dialog Box

The two breakpoints of interest are set at these C program

locations:

__lib_prog_term

at main + 0x06

The Active page of the Breakpoints dialog box enables you to view,
add, and delete breakpoints and browse for symbols. The
Automatic page allows you to choose which breakpoints to set
automatically each time your program is loaded. In the Disassem-

Visual DSP++ 5.0 Getting Started Guide

2-13

Exercise One: Building and Running a C Program

bly and editor windows, double-clicking on a line of code toggles
(adds or deletes) breakpoints. In the editor window, however, you
must place the mouse pointer in the gutter before double-clicking.

These toolbar buttons set or clear breakpoints:
M Toggles a breakpoint for the current line

%| Clears all breakpoints

6. Click OK or Cancel to exit the Breakpoints dialog box.

Step 4: Run dotprodc

To run dotprodc, click the Run button or choose Run from the
Debug menu.

VisualDSP++ computes the dot products and displays the following
results in the Console view (Figure 2-10) of the Output window.

Dot product [0] 13273595
Dot product [1] = -49956078
Dot product [2] = 35872518
: g
4 ¥ J
A AT TE] consote {cia [el x|

Figure 2-10. Results of the dotprodc Program

You are now ready to begin Exercise Two.

2-14 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Exercise Two: Modifying a C Program to
Call an Assembly Language Routine

In Exercise One, you built and ran a C program. In Exercise Two, you:
* Modify the C program to call an assembly language routine

* Create a Linker Description File to link with the assembly language
routine

* Rebuild the project

The project files are almost identical to those of Exercise One. Minor
modifications illustrate the changes needed to call an assembly language
routine from C source code.

Step 1: Create a New Project

To create a new project:

1. From the File menu, choose Close and then Project dotprodc.dpj
to close the dotprodc project.

Click Yes when prompted to close all open source windows.

If you have modified your project during this session, you are
prompted to save the project. Click No.

Visual DSP++ 5.0 Getting Started Guide 2-15

Exercise Two: Modifying a C Program to Call an Assembly
Language Routine

2. From the File menu, choose New and then Project to open the
Project Wizard, shown in Figure 2-11.

Project Wizard ed [
Project Information
Choose the bype, name, and location of the project that vou would like ko create.
=[] Project . Project : Select Type
Q;, Select Processar Project types:
[Application Settings Standard application
2 add Startup CodefLDF [y Library
- J# Finish (3 LwIP Ethemet application
WOK application
W ame:
INewF’miect
Directony:
IE:\E.D\BIackfin\EHamples\Tutorial\NewF’roiect |
Directory
Enter the directary where the new project will be created.
< Back | Memt » | Firish I Cancel

Figure 2-11. Project Wizard — Select Type Page

3. Ensure that Standard application is selected in the Project types
box.

4. In the Name field, type dot_product_asm.

2-16 Visual DSP++ 5.0 Getting Started Guide

9.

Basic Tutorial

Click the browse button _] to the right of the Directory field to

open the Browse For Folder dialog box. Locate the
dot_product_asm tutorial folder and click OK. By default this
directory is in the following location.

C:\\Program Files\Analog Devices\VisualDSP 5.0\BTackfin\
Examples\Tutorial\dot_product_asm

Click Next to display the Select Processor page.

Verify that the Processor type is ADSP-BF533 and the Silicon
Revision is Automatic. Click Next to display the Application Set-
tings page.

. In Select the project output type for your application, verify that

the Executable (.dxe) is selected. Uncheck the Add template

source code to the application check box.

Click Next to display the Add Startup Code/LDF page.

10.Read the displayed text, and select the Add an LDF and startup

code option. When this project is created, startup code that initial-
izes and configures the processor will be added to the project, as
will a Linker Description File that defines the target memory map
and the placement of program sections within processor memory.
The options available to configure the startup code and .1df file
are beyond the scope of this tutorial. Click Finish. The new project
is created and is shown in the Project window.

Visual DSP++ 5.0 Getting Started Guide 2-17

Exercise Two: Modifying a C Program to Call an Assembly

Language Routine

11.From the Project menu click Project Options to display the
Project Options dialog box (Figure 2-12).

Project Options for dot_product_asm

[General

Em Compile

[y General

@ Language Settings
[y MISRA-C

@ Preprocessar
@ Processor (1)
@ Processor (2)
@ Profile-guided Optimization
@ Warning

[y Assemble

B Link

[General

[y LOF Preprocessing
[Elimination

@ Processor

[—:IE Load

@ Cpkions

[y Compression
[y Kernel

[y Splitker

|»

2l x|
— Target
Proceszar I.&DSF‘-EF533 j Bevizsion: I.-’-‘«utomatic j
Type: I Executable file j
Hame: Idot_product_asm
r Taal Chain
LCompiler: IC.-"C++ Comnpiler for Blackfin j
Azzembler: IEIackfin Family & szembler j
Linker: | Blackfin Family Linker =
Loader: IBIackfin Farnily Loader j
Splitter: I j
Settings for configuration: |Debug j
’TI Cancel |

Figure 2-12. Project Options Dialog Box — Project Page

This dialog box enables you to specify project build information.

12.Take a moment to view the various pages in the Project Options
dialog box by selecting them from the tree on the left (Project,

General, Compile, Assemble, Link, Load, Pre-Build, and

Post-Build). Each page provides options used to build the project.

Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

13.0n the Project page (Figure 2-12), verify that the values shown in
Table 2-1 are specified.

Table 2-1. Completing the Project Page

Field Value

Processor ADSP-BF533
Revision Automatic

Type Executable file
Name dot_product_asm
Settings for configuration Debug

These settings specify options for building an executable file for the
ADSP-BF533 processor. The executable contains debug informa-
tion, so you can examine program execution.

14.Click the Compile page to display the General sub-page, shown in
Figure 2-13.

15.Specify these settings in the Code Generation group box:

a. Select the Enable optimization check box to enable
optimization.

b. Select the Generate debug information check box, if it is
not already selected, to enable debug information for the C
source.

c. Clear the Generate assembly code annotations check box.

These settings direct the C compiler to optimize code for the
ADSP-BF533 processor. Because the optimization takes advantage
of DSP architecture and assembly language features, some of the C
debug information is not saved. Therefore, debugging is performed
through debug information at the assembly language level.

Visual DSP++ 5.0 Getting Started Guide 2-19

Exercise Two: Modifying a C Program to Call an Assembly

Language Routine

Project Options for dot_product_asm

= E Compile
Py Gencral
@ Language Settings
[y MISRA-C
[Preprocessor
@ Processor (1)
@ Processor (2)
@ Profile-guided Optimization
[y Warning

-y Assemble
=] Link
- [igh General
@ LCF Preprocessing
[y Elimination
[Processor
EIE Load
@ Opkions
@ Compression
-t Kernel
[y splitter

[

2=l
E%: Project : Compile : General
r— Code Generation
I~ Enable optimization [ptimize far code sizefzpeed:
™ Interprocedural optimization S J Speed
[Generate debug information ' '
[~ Generate assembly code anmotations
r— Inlining [fewer calls, but larger code image)
" Alwaps © Automatic) When declared inline © Mewer
—&dditional Output
[~ Save temparary files [~ Generate preprocessed file
 Attributes
¥ Auto-generated attributes
Additional attributes:
Additional options;
ak I Cancel |

Figure 2-13. Project Options Dialog Box — Compile-General Page

16.Click OK to apply changes and to close the Project Options dialog

box.

You are now ready to add the source files to the project.

2-20

Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Step 2: Add Source Files to dot_product_asm
To add the source files to the new project:

1. Click the Add File button] , or from the Project menu, choose
Add to Project, and then choose File(s).

The Add Files dialog box (Figure 2-14) appears.

x| & &k E-

ICa Debug
dotjroduct_asm.c
dotprod.c
dotprod_func. asm
dotprod_main.c

File: narne: I j Add

Files of type: IAII Source Files [*.c, *.cpp, *.cxx, *.azm, "3, *.dj Cancel |

Figure 2-14. Add Files Dialog Box — Adding Source Files to the Project

2. In the Look in box, locate the project folder, dot_product_asm.

3. In the Files of type box, select All Source Files from the
drop-down list.

VisualDSP++ 5.0 Getting Started Guide 2-21

Exercise Two: Modifying a C Program to Call an Assembly
Language Routine

4. Hold down the Ctrl key and click dotprod.c and dotprod_main.c.
Then click Add.

To display the files that you added in Step 4, open the Source

Files folder in the Project window.

5. Click the Rebuild All button (#4) to build the project. The C

source file opens in an editor window, and execution halts.
The C version of the project is now complete. You are now ready to mod-

ify the sources to call the assembly function.

Step 3: Modify the Project Source Files

In this procedure, you:
* Modify dotprod_main.c to call a_dot_c_asm instead of a_dot_c
* Save the modified file

To modify dotprod_main.c to call the assembly function:
1. Resize or maximize the editor window for better viewing.

2. From the Edit menu, choose Find to open the Find dialog box,
shown in Figure 2-15.

Find HE|

Find what. | =] Firvd Mt |

[Match whale word only Direction b arke Al |
[Match caze ' Up c |
[Regular expression & Down il

Figure 2-15. Find Dialog Box: Locating Occurrences of /*

2-22 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

3. In the Find what box, type /*, and then click Mark All.

The editor bookmarks all lines containing /* and positions the
cursor at the first instance of /* in the extern int a_dot_c_asm
declaration. Bookmarks are indicated by a blue icon in the left mar-
gin (gutter).

4. Select the comment characters /* and use the Ctrl+X key combina-
tion to delete the comment characters from the beginning of the
a_dot_c_asm declaration. Then move the cursor up one line and
use the Ctrl+V key combination to paste the comment characters
at the beginning of the a_dot_c declaration. Because syntax
coloring is turned on, the code changes color as you cut and paste
the comment characters.

Repeat this step for the end-of-comment characters */ at the end of
the a_dot_c_asm declaration, moving them to the end of the
a_dot_c declaration. The a_dot_c declaration is now fully com-
mented out, and the a_dot_c_asm declaration is no longer
commented.

5. Press F2 to move to the next bookmark.

The editor positions the cursor on the /* in the function call to
a_dot_c_asm, which is currently commented out. Note that the
previous line is the function call to the a_dot_c routine.

6. Select the /* and press Ctrl+X to delete the comment characters
from the beginning of the function call to a_dot_c_asm. Then
move the cursor up one line and press Ctrl+V to paste the com-
ment characters at the beginning of the call to a_dot_c.

Repeat this step for the end-of-comment characters */. The main()
function is now calling the a_dot_c_asm routine instead of the
a_dot_c function (previously called in Exercise One).

Figure 2-16 shows the changes made in step 6.

Visual DSP++ 5.0 Getting Started Guide 2-23

Exercise Two: Modifying a C Program to Call an Assembly
Language Routine

[Analog Devices VisualDSP ++ - [Target: ADSP-BF533 ADSP-BF5xx Single Processor Simulator] - [Project: dot_product_asm] —[B[xi

File Edit Session View Project Register Memory Debug Settings Tools Window Help

IDEEIE (s (LB [AACHTE| 4B%% w2 T
) X | GL O By | 5 8 4 &6 |[GoLproccl awm i [= § 0 Gy By

EE G| 0tarmaPrtor @O isNRE D

Project: dot_product_asm.dpj*] Disassembly: __lib_prog_term <]
o dotprod_main.c *
T — . =

" extern int a_d =m(int *. int *
g @g‘—"“’d““'—““‘ cxtern int a_dot_d{ int *, int *) 1ib_prog_tes
5-E3 Source Files © [FFa03441) [IDIEDS
dol_product_sem.c [FFAD344C] SSYNC :
dotprod ¢ (LSS LSS LSS [FFA0344E] JUHP .S lih_
i dotprod_main.c '~ woid main(atexit
H . AL LLLLSLLLLL LS L AL LGS L LTSS LSS LSS =
[Linker Fies [FFAD3450] PO.L = 0x518
"3 Header Files void main(}) [FFAD3454] PO.H = O=f£90
i [FFAD3458] P1.L = OxElc |
int i; [FFAD345C] P1.H = Dxff90
int result[3] = {0} . [FFAD3460] R1 = RO
. [FFAD3462] B2 = [PO] ;
o TESAlLIN] g adat bl 2 B e the followi [FFAD3454] RO = [P1]
I result[1] = a_dot_c asn(a, ©); Fd from the c [FFA03456] CC = R2 <= RO
result[2] = a_dot_d(a. d): -abc -xyz”: [FFAD3468] RO = -1 ;
Lol] [FFAD3464] IF CC JUMP 22
for(i=0; i<3; i+t) [FFAD346C] P1 = [PO] :
f wd] = ¢ wf|ton code here [FFAD34EE] P2.L = O=S24
printf{ "Dot product [#d] = %d\n (FFan3472] T ieiran
[FFA03476] :
[FFA03478]
[FFAD347A]
[FFAD347C]
[FFAD347E]
[FFAD3480] ;
[FFAD3482] :
¥\ Project i ol
X[Tinker finished with 1 error
rll co3090: fatal error: Link failed
M| Tool failed with ewit/exception code: 1
Ell Build vas unsuccessful
g
3 :‘
=
H -
3] Bl
Ready [Halted [tine 121, Col 37 [wBScript: [[

iffistart H e85 H Epicro.. | [Fanal. Elweke...| Ezo... | Ereso..| Etarke..| Eleen. | Bycie. | Fvbw.| [OF LB EB 0SS wa0m

Figure 2-16. Modifying dotprod_main.c to Call a_dot_c_asm

7. From the File menu, choose Save and then File dotprod_main.c
to save the changes.

8. Place the cursor in the editor window. Then, from the File menu,
choose Close and then File dotprod_main.c to close the
dotprod_main.c file.

You are now ready to modify dot_prod_asm.1df.

2-24 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Step 4: Use the Expert Linker to Modify
dot_prod_asm.Idf

In this procedure you:

* View the Expert Linker representation of the . 1df file that you
created

* Modify the .1df file to map the section for the a_dot_c_asm assem-
bly routine

To examine and then modify dot_prod_asm.1df to link with the assembly
function:

1. Click the Add File button + .

2. Select dotprod_func.asmand click Add.

b

Build the project by performing one of these actions:

* Click the Build Project button]

* From the Project menu, choose Build Project.

4. Notice the error in the Output window (Figure 2-17).

|- [x

[Exrror 1i10&0] The following symbols are referenced. but not mapped:
'_a_dot_c asm' referenced from Debughdotprod _main. doj(program)

Linker finished with 1 error and 1 warning
c=3089: fatal error: Link failed

Tool failed with exit-exception code: 1.
Build was unsuccessful.

4[4[[\ console } Build

o
=
=
=
5
&
5
=

Figure 2-17. Output Window: Linker Error

Visual DSP++ 5.0 Getting Started Guide 2-25

Exercise Two: Modifying a C Program to Call an Assembly
Language Routine

5. In the Project window, double-click the dot_prod_asm.1df file.
The Expert Linker window (Figure 2-18) opens with a graphical
representation of your file.

6. Resize the window to expand the view and change the view mode.
To display the tree view shown in Figure 2-18, right-click in the
right pane, choose View Mode, and then choose Memory Map
Tree.

The left pane (Input Sections) contains a list of the input sections
that are in your project or are mapped in the . 1df file. A red X is
over the icon in front of the section named “my_asm_section”
because Expert Linker has determined that the section is not

mapped by the . 1df file.

2-26 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

The right pane (Memory Map) contains a representation of the
memory segments that Expert Linker defined when it created the
1df file.

mutator (1)] - [Progect: dot_product_asm|

Project Hegister Debug Sefings Tools Window Help
BIDSUSS 59 |t 0l o[AFCHAFA|[+ 3R | wh T
40 > | B s @ 8 o 2 [bt vt = o
JuEs | asapmE Bt IER |SDR

Project dot_product_asm.dpj BIEIM & rpe it Linker dot_pro.

T Provect Groue (1 peoject) Inpaat Sections
= L dhet_pwechuet_snem
as N ® 0 e
B e 1 Ty
1B) dekored BB o HO00000
_‘,',I,_F._Mc w1 oM 20000000 [
15 ot produce_sam i wl m 20400000
0 ander st o j t: B:lae ££000000
] Gawmentad Fins ‘ -
20 L eavnoer] TWBRISRAIAA_ fessomn
LRSS AR fEROZ000
4 g eesooooo | TRACENIAS |
#-1) constdets ££908000
[epl_code
L] cob_dats ££al4000
@0 eevaonon | TWRILSRAO
- j clod £ER01000
L] dmal —
& 8 3 s | ML —
1] noncache_code fEs00000
8 [erogram
#-1) voidatn
sl whi —

APoea[

[Erzor 1i1060] The following synbols are referenced. but not mapped
‘_a_dot_c_ssa’ referenced from .“Debug“dotprod_msin.doj{progras)
Linker finished with | error and 1 warning
eci089. latal error: Link failed
Tool failed with ewat ewceptice code: 1
Build was unsuccessful
[Varaing] This LOF was geaera ted by the Startup CodesLDE wizard. Asy changes made to the LDE may be lost the nex t time the LDF is re—g

[Varning] This LOF wagy gemerated by the Startup Code<LDF wizard. Any changes made to the LDF may be lost the next time the LDF 13 re-g
[Varning] This IOF was generated by the Startup Code<IDF wizard. Aoy changes made to the IDF may be lost the next time the ITF is re-g—j

A [[T consoie), mud | el |)

Itahed I [VBSerpt s [

T Vi 5 | & | |cmﬂﬁ MM

Quiput Window

Figure 2-18. Expert Linker Window

7. Map my_asm_section into the memory segment named
MEM_PROGRAM as follows.

In the Input Sections pane, open my_asm_section by clicking on

the plus sign (+) in front of it. The input section expands to show
that the linker macros $COMMAND_LINE_OBJECTS and $0BJECTS and
the object file dotprod_func.doj have a section that has not been

VisualDSP++ 5.0 Getting Started Guide 2-27

Exercise Two: Modifying a C Program to Call an Assembly
Language Routine

mapped. In the Memory Map pane, expand MEM_L1_CODE and drag
the icon from the Input Sections pane in front of $0BJECTS onto
the L1_code output section under MEM_L1_CODE.

As shown in Figure 2-19, the red X should no longer appear
because the my_asm_section section has been mapped.

Expert Linker - dot_product_asm_Ildf*
Input Sectians: Fermary b ap:
=] Segment/Section | Start Address | End Address |
----- % MEM_ASYNCO G0000000 (DO
my_ssm_secton . Q] S MEM_ASYNCT ©20100000 GO
dll SCOMMAND_LINE OBJECTS []I/ | @ MEM_ASYNC2 GI0200000 20
R HESORIECTS L EE [G MEM_ASYNC3 (20300000 (0
----- @ onlbtab33 doj B-4% MEM L1 DATA A (dFEO0000 odF RO
----- @ cin53y doj B¢ MEM_L1_DATA B GfS00000 it
----- @ dot_product_ssm_basicort doj &% MEM_L1 CODE (dfa 00000 Tdfa 13
----- @ dot_product_ssm_heaptab doj D L?_C;de Oz D002 DdfalZef3
----- @ dotprod doj G- MEM_L1_SCRATCH G¢fb00000 GdfbO0R
----- @ dotprod_func.doj . MEM_SYS_MMRS (fcOO000 DT
----- @ dotprod_main.doj
- lbprofile532y db
[]--- nencache_code
[]--- program
[]--- voldata = L=
#-[E] whl - Olpo

Figure 2-19. Dragging $OBJECTS onto the L1_code Output Section

8. From the Tools menu, choose Expert Linker and Save to save the
modified .1df file. Then close the Expert Linker window.

If you forget to save the file and then rebuild the project,
VisualDSP++ will see that you modified the file and will save
automatically it.

You are now ready to rebuild and run the modified project.

2-28 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Step 5: Rebuild and Run dot_product_asm
To run dot_product:

1. Build the project by performing one of these actions:

* Click the Build Project button

* From the Project menu, choose Build Project.

At the end of the build, the Output window displays this message
in the Build view:

“Build completed successfully.”

Visual DSP++ loads the program, runs to main, and displays the
Output, Disassembly, and editor windows (shown in Figure 2-20).

Visual DSP++ 5.0 Getting Started Guide 2-29

Exercise Two: Modifying a C Program to Call an Assembly
Language Routine

[»] Analog Devices VizsualDSP++ - [Tamget: ADSP-BF533 ADSP-BFoxx Single Proces=or Simulator] - [Project: dot_product____ [l[=] [E3

. Eile Edit Session View Pl{}jed Begister Memory Debug Setings Tools Window Help _18 x|
BHFS ¥9 (4 BR o AL ATE 4% I a?

] Idot_produc:t_asm L”Debug ;I % Ut Uk Uhy
SEIEE S Mg RGN DR E D RG 2
Project dot_product asm dpi [F 1| INEFECEEDY Bi[oisassembly B
Project Group (1 project) int i | I _I_I
B ii 1t[3] = {0%
ﬁda“‘—"“’d"" asm =~ intzesu @ [FFAOOCES] PL.L = 0298 4|
=2 Source Files result[0] = a_dot_bi [FFAOOCEC] P1 H = 0=ffs0
% result[1l] = a_dot_ [FFAODOCEFO] B2 = [P1 ++
result[1] = a_dot_c_ [FFAODOCEZ] [FP + —-1&] -
= a result[2] = a_dot_di [FFAOOCF4] R3 = [Pl ++ °
E| Lirker Filss) o s . [FFAO00CFE] [FP + —-12 1 -
i f =0: 3 ; k
------ | [dot_product_ssmidi v {Dr(PRl aess A [FFADOCFE] R2 = [PL 4+ °
D Header Files printf{ "Dot prc [FFaO00CFa] [FP + -8] =
(22 Generated Fies + [FFADOCFC] R1.L = 756 :
b [FF&00DO0] R1.H = -128
¥ Project | <] 3 < | 2l
reakpoint Hit at <ffallccd: -
x| Breakpoint Hi fia0lced =]
L
Loading: "D:“Program Files“Vi=ualDSP 4. 5-Blackfin“Ezamples Tutorial“dot_product_as
- Load complete.
= [Warning =i1005] The system mmr <0x{fc00500: references a unit or peripheral not o
= Breakpoint Hit at <ffallced:
3
F:.‘." v <
= I [AT>T5T console /i Buid /. | IR
Ready |Halted |Line 118, Col 1 [VBSeript [NUM 4

Figure 2-20. Windows Left Open from the Previous Debugger Session

2. Click the Run button to run dot_product_asm.

The program calculates the three dot products and displays the
results in the Console view of the Output window. When the
program stops running, the message “Halted” appears in the status
bar at the bottom of the Visual DSP++ main window. The results,
shown below, are identical to the results obtained in Exercise One.

Dot product [0] = 13273595
Dot product [1] = -49956078

Dot product [2] = 35872518

You are now ready to begin Exercise Three.

2-30 VisualDSP++ 5.0 Getting Started Guide

Basic Tutorial

Exercise Three: Plotting Data

In this exercise, you:

* Load and debug a prebuilt program that applies a simple Finite
Impulse Response (FIR) filter to a buffer of data

e Use the Visual DSP++ plotting engine to view the different data

arrays graphically, both before and after running the program

Step 1: Load the FIR Program

To load the FIR program:

1. Keep the Disassembly window and Console page (of the Output
window) open, but close all other windows.

2. From the File menu, choose Load Program or click % .
The Open a Processor Program dialog box appears.

3. Select the FIR program to load as follows.

a. Open the Analog Devices folder and double-click:

VisualDSP 5.0\Blackfin\Examples\Tutorial\fir
b. Double-click the Debug subfolder.
c. Double-click FIR.DXE to load the program.

If VisualDSP++ does not open an editor window (shown in
Figure 2-21), right-click in the Disassembly window and
select View Source.

Visual DSP++ 5.0 Getting Started Guide 2-31

Exercise Three: Plotting Data

[»] Analog Devices VisualDSP++ - [Target: ADSP-BF533 ADSP-BFaxx Single Processor Simulator] - ffir_test c]

File Edit Session View Project Register Memory Debug Seftings Teols Window Help 18 x|
MIDSHFS 349 (28 20 BAACATE 4% a2

EE Ltk @& | | JEa| s ML
B e a BRGE0a REG 20RO R
fir_state frle =; _I | ly jj
I~ nsanples = BUFFER SIZE; |
taplength = BASE_TAPLENGTH ; o [FFa0072E] B3 = 260 (X d
[FF&007B2] [FP + -8] =
fir_init{=, h, delay. taplength): [FFAO007E4] R2 = 8 ;
) [FFAO007B6] [FP + —4] =
_fir{IN, OUT. nsamples. &s): [FF4007E8] R1.I = 664
3 [FFAO07BC] RL.H = -128 ; | |
[FFA007C0] [FP + -20] =
[FFADD7CZ] RO.L = 8196
[FFA007CE] ROCH = -112 ;
[FFAO007CA] [FP + -16] =
| 3 < | v
ﬂ [Warning =11005] The sy=tem mnr <0=zxff{c00500: references a unit or peripheral not cd
j Ereakpoint Hit at <ffallced:
'g Loading: "D:“~Program FilesVisualDSPE 4. 5~Blackfin“Ezamples~Tutorial-firsdebug-fir.
= Load complete.
= Breakpoint Hit at <ffall7as:
5
=l e b
S [T] console 4 Buid 7]
Ready |Halted |Line 30, Col 1 [VBScript [NURM 4

Figure 2-21. Loading the FIR Program
4. Look at the source code of the FIR program (fir_test.c).
You can see two global data arrays: (IN and 0UT).
You can also see one function, fir, that operates on these arrays.

You are now ready to open a plot window.

2-32 VisualDSP++ 5.0 Getting Started Guide

Basic Tutorial

Step 2: Open a Plot Window

To open a plot window:

1. From the View menu, choose Debug Windows and Plot. Then

choose New to open the Plot Configuration dialog box, shown in
Figure 2-22.

Here you add the data sets that you want to view in a plot window.

Plot Configuration EE
D ata sets: ; ~ Plat
Type: |Line Plat j
Title: |Untitled
—Data Setting

MHame: IData Setl

Memary: IEL!-\I:KFIN M emony

Address: I— Emwse...lgffset: IEI—
Add Count; IEI Bow count; IEI
Bemaoyve | Stride: |1 Colurnn caunt:IEI

Hew | Data: I char

Kl

Kl

—Awiz Selection

T Yy OF

ok I Cancel | Settings... |

Figure 2-22. Plot Configuration Dialog Box

VisualDSP++ 5.0 Getting Started Guide 2-33

Exercise Three: Plotting Data

Table 2-2. Two Data Sets:

2. In the Plot group box, specify the following values.

* In the Type box, select Line Plot from the drop-down list.

* In the Title box, type fir.

3. Enter two data sets to plot by using the values in Table 2-2.

Input and Output

Box Input Data Output Data | Description
Set Set
Name Input Output Data set
Memory BLACKFIN BLACKFIN Data memory
Memory Memory
Address IN ouT The address of this data set is that of the
Input or Output array.
Click Browse to select the value from the list
of loaded symbols.
Count 128 128 The array is 260 elements long, but you are
plotting the first 128 elements.
Stride 1 1 The data is contiguous in memory.
Data short short Input and Output are arrays of int values.
After entering each data set, click Add to add the data set to the
Data sets list on the left of the dialog box.
The Plot Configuration dialog box should now look like the one in
Figure 2-23.
2-34 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Plot Configuration

=
[%]

— Plot
Type: ILine Plat

L

Title: |fi

— Drata Setting

Marne: IInput

Memany: IEL.&EKFIN b ernory

Addrezs: IIN ﬂruwse...l Offzet: ID—
Add Count; |128 Bow caunt:ID
Remove | Shride: |1 Calurin c:u:nunt:ID

New | D atar: Ishu:urt

Kl

L

— Az Selection

] | Cancel | Settings... |

Figure 2-23. Plot Configuration Dialog Box with Input/Output Data Sets

4. Click OK to apply the changes and to open a plot window with

these data sets.

The plot window now displays the two arrays. By default, the
simulator initializes memory to zero, so the Output data set
appears as one horizontal line, shown in Figure 2-24.

VisualDSP++ 5.0 Getting Started Guide 2-35

Exercise Three: Plotting Data

BT & SRR ISTaNS & &
rl|”| "L|"| r|"| "'u"q l".|”| ""‘| ;‘u"t ,|"'|”| "u"l .l'”.'“l n‘|'||l l'”J”t |"'|"|

0.0%0°" ~

!| H |!|' "|| 'H' - I i 'l il "|| |
|||‘| \||| \U \‘l \|| \”h, \|}|||| \‘u i \", \|J|||| ||‘|

Figure 2-24. Plot Window: Before Running the FIR Program
Resizing the plot window changes the scale on the x and y axis.

5. Right-click in the plot window and choose Modify Settings.
On the General page of the Plot Settings dialog box, in the
Options group box, select Legend and click OK to display the leg-
end box. Click OK again.

2-36 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Step 3: Run the FIR Program and View the Data

To run the FIR program and view the data:

1. Press F5 or click the Run button = to run to the end of the

program.

When the program halts, you see the results of the FIR filter in the
Output array. The two data sets are visible in the plot window, as
shown in Figure 2-25.

I - <

e f\H ﬁ'\ n|‘ \' M‘ |\'| “‘ \' l‘“ "“ |\'| “~ \'
‘.h |W|~| Ll

i

0.0+ I:I

“u ~|u \‘Ip |~‘n “l H | :\ W‘ﬂ, |~|~ ﬁw‘

a0 T8 100

Figure 2-25. Plot Window After Running the FIR Program to Completion

Next, you will zoom in on a particular region of interest in the plot
window to focus in that data.

2. Click the left mouse button inside the plot window and drag the
mouse to create a rectangle around the area of interest. Then
release the mouse button to magnify the selected region.

Visual DSP++ 5.0 Getting Started Guide 2-37

Exercise Three: Plotting Data

Figure 2-26 shows the selected region, and Figure 2-27 shows the
magnified result.

Figure 2-26. Plot Window: Selecting a Region to Magnify

2-38 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

o.o*0

Figure 2-27. Plot Window: Magnified Result

To return to the previous view (before magnification), right-click
in the plot window and choose Reset Zoom from the pop-up
menu. You can view individual data points in the plot window by
enabling the data cursor, as explained in the next step.

3. Right-click inside the plot window and choose Data Cursor from
the pop-up menu. Move to each data point in the current data set
by pressing and holding the keyboard’s left or right arrow key.

To switch data sets, press the keyboard’s up or down arrow key.
The value of the current data point appears in the lower-left corner
of the plot window, as shown in Figure 2-28.

4. Right-click in the plot window and choose Data Cursor from the
pop-up menu.

Next you will look at data sets in the frequency domain.

5. Right-click in the plot window and choose Modify Settings to
open the Plot Settings dialog box.

Visual DSP++ 5.0 Getting Started Guide 2-39

Exercise Three: Plotting Data

Figure 2-28. Plot Window: Using the Data Cursor Feature

2-40 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

6. Complete these steps:

a. Click the Data Processing tab to display the Data Process-
ing page, shown in Figure 2-29.

Plot Settings ﬂﬁ
General| 2D Asis| Font | Syl DataProcessing |

Data Sets Data Process:

Output Conwert to dB
FFT agnitude
20 FFT Magnitude

Sample rate [Hz): IEI
Stored traces: |1

Trigger
I Eising ¥ Ealing

Threzhold level: ID

ak I Cancel | Help

Figure 2-29. Data Processing Page

VisualDSP++ 5.0 Getting Started Guide 2-41

Exercise Three: Plotting Data

b. In the Data Sets box, ensure that Input (the default) is
selected. In the Data Process box, choose FFT Magnitude.

c. In the Sample rate (Hz) box, type 10000.

d. In the Data Sets box, select Output. In the Data Process
box, choose FFT Magnitude

e. Click OK to exit the Plot Settings dialog box.

Visual DSP++ performs a Fast Fourier Transform (FFT) on
the selected data set before it is plotted. The FFT enables
you to view the signal in the frequency domain, as shown in
Figure 2-30.

o0’

1,000 2,000 3,000 4,000 5,000
Freq

Figure 2-30. FFT Performed on a Selected Data Set

2-42 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Now, complete the following steps to look at the FIR filter’s response in
the frequency domain.

1. From the View menu, choose Debug Windows and Plot. Then
choose New to open the Plot Configuration dialog box.

2. Set up the Filter Frequency Response plot by completing the Plot
and Data Setting group boxes as shown in Figure 2-31.

Plot Configuration EHE

¢ [Plat
Tupe: |Line Plot |

Title: IFiItel Frequency Response

—Data Setting

Mame: |h

Memony: IBU—\EKFIN M emon

Address: Ih— Erow&e...lgffset: ID—
el Count: IE Bow count:ID
Fiemove | Stride: |1 Calumn count:ID

Hew | D ata: Ishort

L«

Lo

Az Selection
’7 Cx iy €z |

0k | Cancel | Settings... |

Figure 2-31. Filter Frequency Response Data Set

3. Click Add to add the data set to the Data sets box.

4. Click OK to apply the changes and to open the plot window with
this data set.

5. Right-click in the plot window and choose Modify Settings to
open the Plot Settings dialog box.

VisualDSP++ 5.0 Getting Started Guide 2-43

Exercise Three: Plotting Data

6. Click the Data Processing tab to display the Data Processing page,
shown in Figure 2-29 on page 2-41. Complete this page as follows.

a. In the Data Sets box, select h.

b. In the Data Process box, choose FFT Magnitude.
c. In the Sample rate (Hz) box, type 10000.

d. Click OK to exit the Data Processing page.

Visual DSP++ performs a Fast Fourier Transform (FFT) on the
selected data set, and enables you to view the filter response plot in
the frequency domain, as shown in Figure 2-32.

Filter Frequency Response

Filter Frequency Response

n.oe10°

500 1,000 1,600 2,000 2500 3,000 3500 4000 4,500

Line Flot FFT

Figure 2-32. Filter Frequency Response Plot

This plot shows that the low-pass FIR filter cuts off all frequency
components above 4,000 Hz. When you apply a low-pass filter to
the input signal, the resulting signal has no output above 4,000 Hz.

You are now ready to begin Exercise Four.

2-44 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Exercise Four: Linear Profiling

In this exercise, you:

Load and debug the FIR program from the previous exercise

Use linear profiling to evaluate the program’s efficiency and to
determine where the application is spending the majority of its exe-
cution time in the code

Visual DSP++ supports two types of profiling: linear and statistical.

You use linear profiling with a simulator. The count in the Linear
Profiling window is incremented every time an assembly instruc-
tion is executed.

You use statistical profiling with a JTAG emulator connected to a
processor target. The count in the Statistical Profiling window is
based on random sampling of the program counter.

Step 1: Load the FIR Program

To load the FIR program:

1.

Close all open windows except the Disassembly window and the
Output window.

From the File menu, choose Load Program, or click & . The
Open a Processor Program dialog box appears.

Visual DSP++ 5.0 Getting Started Guide 2-45

Exercise Four: Linear Profiling

3. Select the program to load as follows.
a. Open the Analog Devices folder and double-click:
VisualDSP 5.0\Blackfin\Examples\Tutorial\fir
b. Double-click the Debug subfolder.
c. Double-click fir.dxe to load and run the FIR program.

If VisualDSP++ does not open an editor window (shown in
Figure 2-34), right-click in the Disassembly window and
select View Source.

You are now ready to set up linear profiling.

Step 2: Open the Profiling Window

To open the Linear Profiling window:

1. From the Tools menu, choose Linear Profiling and then choose

New Profile.
Tools
> |
| Linear Profiling | NewProfile
ExpertLinker 4
Elash Programmer...
PGO ¢

Figure 2-33. Setting Up Linear Profiling for the FIR Program

The Linear Profiling window opens without any data.

2-46 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

2. Click in the profiling window’s title bar and then drag and drop
the window to the top of the Visual DSP++ main window, as shown
in Figure 2-34. You will have a better view of the profile data.

[»] Analog Devices VisualDSP++ - [Target:- ADSP-BF533 ADSP-BF5xx Single Processor Simulator] - ffir_test c]

. File Edit Session View Pl{}jed RBegister Memory Debug Seffings Tools Window Help == =]
i FHIE $49 (428 20 BACHTE 4% I a7
*@Ei %&:% @@m‘l =l =] i BB

IS e adm R NsREE B0R5E
ﬂ Hi=togram | ‘Xl Exzecution nit ‘Xl Line. .. | Source
=
B
o
=
2
i) | Total Samples: 0 |Elapsed Time: 00:00:00 [Enabled
Testeretalt = B[Disassombly _______[OF]
o nzamples = BUFFER SIZE; | | Ll_l
taplength = BASE TAPLENGTH :
1 & [FFADO7AE] R3 = 260 { X :I
fir_init{=s. h., delay. taplength): [FFAOO7EZ] [FP + -8] =
_>I_I q] I _>I_I
ﬂ Loading: "C:~Frogram Files“Analog Devices“VisualDSP 4 S5-~EBElackf 1n\Examples\TutDr1al_|
J Load complete.
Breakpoint Hit at <ffall7as:
>3 LI
XT3 console f Buid] »
Ready |Halted |Line 30. Col 1 [VBScript [NUM 4

Figure 2-34. Linear Profiling Window (Empty)

The Linear Profiling window is initially empty. Linear profiling is
performed when you run the FIR program. After you run the pro-
gram and collect data, this window displays the results of the
profiling session.

You are now ready to collect and examine linear profile data.

VisualDSP++ 5.0 Getting Started Guide 2-47

Exercise Four: Linear Profiling

Step 3: Collect and Examine the Linear Profile Data

To collect and examine the linear profile data:
1. Press F5 or click to run to the end of the program.

When the program halts, the results of the linear profile appear in
the Linear Profiling window.

2. Examine the results of your linear profiling session.

The Linear Profiling window is divided into two three-column
panes.

The left pane shows the results of the profile data. You can see the
percentages of total execution time consumed, by function and by

address.

Double-clicking a line with a function enables you to display the
source file that contains that function. For example, double-click
the fir function (and respond to the prompt) to display the assem-
bly source file (fir.asm) in the right pane, as shown in

Figure 2-35.
Hiztogram | "/.l Execution Unit 7.| Line. . |D:\Prngram FilesnWizualDSF 4. 0~Blackfin-Exanple. . s
I 0 o fir() 0.163% £9 nop;nop; hop;
| 1.50% main() 0.05% 70 P1=[P0++]: <7 hddress of the f.. .
| 1.03% _e=xit 71
0.52% main() 0.05% 72 P2=[P0++]; s Ahddress of the d...
0.26% =start 73 L}
0.05% PC[O0=ffal07f8] 0.05% 74 R3=[PO++]: #< Humber of filter
75
0.05% 76 E3=R1; ssOutput buffer ini. ..
0.08% 77 I2=F1; < Initialize IZ2 to. . .
0.05% 78 B2=F1: #< Filter coeff ar
0.05% 79 I0=F2: <7 start of the del. . .«
< »
Total Samples: 1935 Elapsed Time: 00:00:01 Enabled

Figure 2-35. Linear Profiling Results, FIR Program Performance Analysis

The field values in the left pane are defined as follows.

2-48 Visual DSP++ 5.0 Getting Started Guide

Basic Tutorial

Histogram A graphical representation of the percentage of time
spent in a particular execution unit. This percentage
is based on the total time that the program spent
running, so longer bars denote more time spent in a
particular execution unit. The Linear Profiling
window sorts the data with the most time-consum-
ing (expensive) execution units at the top.

% The numerical percent of the same data found in
the Histogram column. You can view this value as
an absolute number of samples by right-clicking in
the Linear Profiling window and by selecting View
Sample Count from the pop-up menu.

Execution Unit The program location to which the samples belong.
If the instructions are inside a C function or a C++
method, the execution unit is the name of the func-
tion or method. For instructions that have no
corresponding symbolic names, such as hand-coded
assembly or source files compiled without debug-
ging information, this value is an address in the
form of PCLxxx1, where xxx is the address of the
instruction.

If the instructions are part of an assembly file, the
execution unit is either an assembly function or the
assembly file followed by the line number in
parentheses.

Visual DSP++ 5.0 Getting Started Guide 2-49

Exercise Four: Linear Profiling

In Figure 2-35 on page 2-48 the left pane shows that the fir function
consumes over 93% of the total execution time. The right (source) pane,
shown in Figure 2-36, displays the percentage that each line in the fir
function consumes.

%[Line. . . | D:“Program Files"VizualDSE 4 0~Blackfin“ExanplesTu. .. ||
BR | _ fir
67
0.08% 68 PO=[SP+12]:; s hddress of the filt.
0.16% 69 nop: nop;hop;
0.05% 70 Fl1=[PO0++]: 7 Ahddres= of the filte.
71
0.05% 72 F2=[FPO0++]: s Ahddress of the delay.
73
0.05% 74 R3=[PO0++]; s Humber of filter coe.
75
0.05% 76 B3i=E1; so0utput buffer initial.
0.08% 77 I2=P1: s+ Initialize I2 to the.
0.05% 78 B2=FP1: << Filter coeff. array .
0.05% 79 I0=F2; 77 =tart of the delay 1.
0.05% a0 EBO=F2; 77 Delay line buffer i=.
0.05x% 81 I1=F2; -+ ztart of the delay 1.
0.05% a8z Bl=F2; s Delay line buffer i=.
a3
0.05% 824 I3=R1;
0.08% a5 P1=R2Z:
0.05% g6 P2=R3;
a7
0.08% a8 R2=R2+RZ;
0.05% 89 CC=BITTST(R3.0): ~~Check if the number o.
0.05% 90 R3I=R3+RE3: ssh=z the filter coeff
0.08% 91 L2=R3: ssInitialize the filter.
0.05% 92 FO=R0; # Address of the inpu.
93
0.26% 94 IF ICC JUMP FIE_CONTINUE (EF}:
95 R3+=2; s-HMake the filter taps .
96 L2=R3:
97 NOP: NOP : HOF ; HOP ;
98 I2-=2; ~# Location where zer.
99 RO=0:
100 W[I2++]1=R0O.L: ##5et the last filter ...
101 ssforce the punber of f3 LI

Figure 2-36. Linear Profile Data for fir.asm

You have now completed the Basic Tutorial.

2-50 Visual DSP++ 5.0 Getting Started Guide

3 ADVANCED TUTORIAL

This chapter contains the following topics.
e “Overview” on page 3-1
e “Exercise One: Using Profile-Guided Optimization” on page 3-2

* “Exercise Two: Using Background Telemetry Channel” on

page 3-23

Overview

This tutorial demonstrates advanced features and techniques that you can
use in the Visual DSP++ Integrated Development and Debugging Envi-
ronment (IDDE). The exercises use sample programs written in C and
assembly for Blackfin processors.

* In Exercise One: Using Profile-Guided Optimization, you build a
project with PGO support, create PGO files, compile the project
without using the information in the PGO files, recompile the
project by using the PGO files to optimize the build, check the

PGO results, and compare execution times.

* In Exercise Two: Using Background Telemetry Channel, you run
two demos that demonstrate BTC functionality.

The ADSP-BF53x Family Simulator and ADSP-BF533 processor are used
in Exercise One. The ADSP-BF533 EZ-KIT Lite and an HPPCI-ICE,
HPUSB-ICE, or debug agent connection are used in Exercise Two.

VisualDSP++ 5.0 Getting Started Guide 3-1

Exercise One: Using Profile-Guided Optimization

Exercise One: Using Profile-Guided
Optimization

Profile-guided optimization (PGO) is an optimization technique that uses
collected profile information to guide the compiler optimizer’s decisions.

Traditionally, a compiler compiles each function only once and attempts
to produce generated code that will perform well in most cases. The com-
piler has to make decisions about the best code to generate. For example,
given an if..then.else construct, the compiler has to decide whether the
most common case is the then or the else. You can offer crude guide-
lines—compile for speed or compile for space—but, usually, the compiler
has to make a default decision.

With PGO, the compiler makes these decisions based on data collected
during previous executions of the generated code. This process involves
the following steps.

1. Compiling the application to collect profile information

2. Running the application in a simulator session by using representa-
tive data sets

The simulator accumulates profile data indicating where the appli-
cation spends most of its time.

3. Recompiling the application by using the collected profile data

The compiler uses the collected information rather than the appli-
cation’s default behavior to make decisions about the relative
importance of parts of the application.

The profile data collected from a simulator run is stored in a file with a
.pgo suffix. You can process multiple data sets to cover the spectrum of
potential data and create a separate .pgo file for each data set. The recom-
pilation stage can accept multiple .pgo files as input.

3-2 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

You must complete these basic steps to use PGO:
1. Build the application with PGO support.

2. Set up one or more streams in the simulator to provide a set of data
inputs that represent what the application would see in a real target
environment.

3. Tell the simulator to produce a .pgo file with a specified file name.
4. Load and run the application to produce the .pgo file.

5. Rebuild the application and pass all . pgo files to the compiler,
which uses the generated PGO results to optimize the application.

In this exercise, you:
* Load the PGO example project in the VisualDSP++ environment
* Create data sets for profile-guided optimization
e Actach input streams to the data sets

* Create .pgo files by executing the project with the data sets as
input

* Recompile the project by using the .pgo files to optimize the build

* Run the optimized version of the project with the same data sets as
input

* Compare the execution times of all three executions

The files used for this exercise are in the pgo folder. The default installa-
tion path of this folder is:

Program Files\Analog Devices\VisualDSP++
5.0\BTackfin\Examples\Tutorial\pgo

Visual DSP++ 5.0 Getting Started Guide 3-3

Exercise One: Using Profile-Guided Optimization

Step 1: Load the Project

To open a Visual DSP++ project:

1. Start Visual DSP++ and connect to an ADSP-BF533 simulator ses-
sion. For information about connecting to a session, refer to “Step
1: Start Visual DSP++ and Open a Project” on page 2-3.

2. Open the PgoExample.dpj project. For details about opening
projects, see “Step 1: Start VisualDSP++ and Open a Project” on
page 2-3.

This project contains a C file, PgoExample.c, which is in the
project’s Source Files subdirectory. When you run the program, it
reads data from an address and counts the number of even and odd
values. This counting is done with an if..then..else statement. If
the majority of values read are odd, the program will spend most of
its time in the then.. branch. If the majority of values are even, the
program will spend most of its time in the else.. branch. Normally,

3-4 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

the compiler has no way of knowing which branch will be taken
more often. By using PGO, the compiler can determine which
branch is used most often and optimize the next build.

@ This project also contains a Visual Basic script that demonstrates

how to use the Visual DSP++ Automation API to perform PGO.
The automation functionality is beyond the scope of this tutorial.
Refer to online Help for more information about automation.

Three data files are used as input to the C program. These simple
text files contain lists of values.

* Dataset_l.dat has 128 even values (50%) and 128 odd val-
ues (50%).

* Dataset_2.dat has 192 even values (75%) and 64 odd val-
ues (25%).

* Dataset_3.dat has 256 even values (100%) and 0 odd val-
ues (0%).

To view these files, choose the Open command on the File menu
in Visual DSP++. The two possible values in all three files are either
0x01 or 0x02. Each file contains 256 values.

In this exercise, assume that this program will be used in the real
world, and that you can expect a similar distribution of values as
input from the real world.

By looking at the C code and the potential input, you can easily see
that the executed program will spend more time in the else..
branch than in the then.. branch. Without using PGO, the com-

Visual DSP++ 5.0 Getting Started Guide 3-5

Exercise One: Using Profile-Guided Optimization

piler cannot make this same conclusion. By default, it will expect
the then.. branch to be executed most frequently and will compile
the code without optimizing execution time.

Since the example program and input are very simple, you could fix
the problem by making a few minor changes to the code. Manually
tweaking a large program to speed up execution time, however,
would take far too long, and you would have to analyze sample
input on your own. PGO provides a quick and easy way to enable
the compiler to make these adjustments for you.

Step 2: Configure a Data Set

The first step in the PGO process is to create a data set—a collection of
sample input for the program being optimized. A data set feeds the input
into the executing program, and this input causes the program to be exe-
cuted along certain paths. Some paths will be used more often than others.
This information is recorded by the simulator and stored in a .pgo file for
the compiler to use later for optimization. The most commonly used paths
will be optimized to run quickly, and less common paths will run more
slowly.

3-6 VisualDSP++ 5.0 Getting Started Guide

Advanced Tutorial

To create the first of three data sets for this exercise:

1. From the Tools menu, choose PGO and then Manage Data Sets,
as shown in Figure 3-1.

| Tools

bk
Linear Profiling k
Expert Linker k
Flash Programmer...
PGO Manage Data Sets. ., %J

Figure 3-1. Manage Data Sets Menu Option

Visual DSP++ 5.0 Getting Started Guide 3-7

Exercise One: Using Profile-Guided Optimization

The Manage Data Sets dialog box (Figure 3-2) is displayed.

Manage Data Sets ﬂ |

Faramneter | W alue |

[Copy...
Edit...

[Melete,..

[
HE
[o
[

[elete Al

— Dptimization level:

J

Smallezt code Current walue: I'I oo Fastest code

] | Cancel |

Figure 3-2. Manage Data Sets Dialog Box

This dialog box is where you manage data sets. Note the Optimiza-
tion level slider bar. This control allows you to customize your
optimization. Moving the slider all the way to the left enables you
to build as small an executable as possible, but may sacrifice execu-
tion speed. Moving the slider all the way to the right enables you to
build a fast executable, with a potential space tradeoff. Placing the

3-8 VisualDSP++ 5.0 Getting Started Guide

slider between the two extremes provides varying ratios of space

Advanced Tutorial

versus speed optimization. For this exercise, make sure the slider is
positioned all the way to the right.

2. Click the New button to open the Edit Data Set dialog box, shown

in Figure 3-3.

Edit Data Set |

[rata set name:

Clutput filename [poo):

Cammand-line argurments:;

Input streams:

Input File | Deztination Device | MHew. ..

Edit...

[relete...

[elete Al

ak.

Canicel

Figure 3-3. Edit Data Set Dialog Box

VisualDSP++ 5.0 Getting Started Guide

3-9

Exercise One: Using Profile-Guided Optimization

3. Replace the default Data set name with a more descriptive name.

Since the first data file contains an equal number of even and odd
values, use a name such as 50% Even - 50% 0dd.

. Specify the Output filename (where the optimization information

produced by this data set will be saved). Optimization information
is saved in files with a .pgo suffix.

Type in a file name such as dataset_1.pgo. The file will be saved
in the project directory. To save the files elsewhere, type in a full
path name. You can use Command line arguments for more
advanced control of the data set, but they are not covered in this
tutorial.

For more information about command-line arguments, see the
VisualDSP++ 5.0 C/C++ Compiler and Library Manual for Blackfin

Processors.

Now you have to attach an input stream to this data set.

3-10

Visual DSP++ 5.0 Getting Started Guide

Step 3: Attach an Input Stream

Advanced Tutorial

In this step you attach an input stream to the data set.

1. Click the New button on the Edit Data Set Dialog Box
(Figure 3-3) to open the Edit PGO Stream dialog box, shown in

Figure 3-4.

dnpoostream HE|

— Input Source File:

Filzrnarmne: ||

N

Farmat: I Hexadecimal

[Rewind on reset or restart

[Circular

[

— Destination Dewvice:

Pracessor: |ADSP-BF533

Device: I O=FFDO0000-0<FFOO0FFF

Address: I

ak. Cancel

Figure 3-4. Edit PGO Stream Dialog Box

An input stream maps a data file to a destination device. In this
exercise, the input streams map the three data files to the simulator.

VisualDSP++ 5.0 Getting Started Guide

3-11

Exercise One: Using Profile-Guided Optimization

The input stream provides the program with input as needed dur-

ing execution.

For more information about streams, see the “Debugging” chapter
in the VisualDSP++ 5.0 User’s Guide.

2. Complete the Input Source File group box as described in

Table 3-1.

Table 3-1. Input Source File Group Box Settings

Field/Control Action/Value

Filename Specify a file name by clicking the file browse button and selecting
the input source file dataset_1.dat from the pgo directory.

Format The darta in this file is in hexadecimal format, so leave the format

setting as is.

Rewind on reset or restart

Select this option. When you run a program with an input stream,
the program may or may not work through all of the data in the
stream. If the program encounters a reset or restart event before
working through the entire data stream and this option is enabled,
the next execution starts at the beginning of the input stream. Oth-
erwise, execution continues where it left off.

Circular

Select this option. It allows the program to read through an input
stream many times during a single execution.

Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

3. In the Destination Device group box, specify where the data from
the input stream is sent. Refer to Table 3-2.

Table 3-2. Destination Device Group Box Settings

Field/Control

Action/Value

Processor

This field lets you specify a peripheral in another processor as the
destination device. For this tutorial, you are connected to a single
processor session, so this field is disabled.

Device

This field lets you choose any stream device supported by the simu-
lator target as the destination. Devices can include a memory
address or various peripherals. Available devices depend on the pro-
cessor you are using. For more information on devices, see the hard-
ware manual for your processor. The program reads the input
streams from memory, so leave this field as it is.

Address

Specify where in memory the input will be sent. Since the program
in this exercise reads data from address OxFFD00000 (refer to
PgoExample.c), enter this value.

Visual DSP++ 5.0 Getting Started Guide 3-13

Exercise One: Using Profile-Guided Optimization

The completed dialog box should now look like Figure 3-5.

EditpGostream |

— Input Source File:

Filename: Idata&et_ldat

N

Farmat: I Hexadecimal

v Fewind on reset ar restart

v Circular

[

— Destination Device:

Frocessor: |.£'-.D SP-BF533

Device: I O=FFDO0000-0=FFDOOFFF

Addregs: |0<FFD0000D

[L L

Cancel |

Figure 3-5. A Configured PGO Stream

3-14

VisualDSP++ 5.0 Getting Started Guide

Advanced Tutorial

4. Click OK to return to the Edit Data Set dialog box. The dialog

box with your configured data set should match Figure 3-6.

Editpataset G|

Drata =2t name:

|5|Jz Even - 50% Odd

Cutput filenarne [paa):

Idataset_'l pao |

Cammand-line argurments:

Input streams:

Input File | Destination Device |
% datazet_1.dat 0«FFCO0000-0<FFDO0. .
Edit...
[relete..
Delete All..
k. Cancel

Figure 3-6. A Configured Data Set

5. Click OK to save the data set and close the dialog box.

You now have to create the remaining two data sets.

VisualDSP++ 5.0 Getting Started Guide

3-15

Exercise One: Using Profile-Guided Optimization

Step 4: Configure Additional Data Sets

To create the remaining two data sets, you can repeat the steps used to cre-
ate the first data set and substitute the appropriate files, or use the Copy
button.

The following steps explain how to use the Copy button to create a data
set.

1. Highlight the 50% Even - 50% 0dd data set, and click the Copy
button.

The Edit Data Set dialog box opens with the information for the
50% Even - 50% 0dd data set. Clicking the OK button makes a
copy of the 50% Even - 50% 0dd data set. For this exercise, how-
ever, you will edit the data set.

2. In the Data set name field, specify an appropriate name for the
new data set.

The second input source file contains three times as many even val-
ues as odd values, so use a name such as 75% Even - 25% 0dd.

3. In the Output filename field, type the name dataset_2.pgo to save
the .pgo file in the project directory.

To save the file elsewhere, click the file browse button (_..|) to
specify a full path.

4. In the Input streams box, highlight the dataset_1.dat Input File
and click the Edit button.

5. Click the file browse button (_..]) to change the Input Source File
from dataset_1.dat to dataset_2.dat.

6. Click the OK button to return to the Edit Data Set dialog box.

The second data set is now complete.

3-16 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

7. Click the OK button to return to the Manage Data Sets dialog

box.

8. Create the third data set from scratch or modify a copy of one of
the existing data sets.

Make sure that you use the dataset_3.pgo and dataset_3.dat
files. The third data set contains all even values, so give it a name
such as 100% Even - 0% 0dd. When you are finished, expand the
three data sets listed in the Manage Data Sets dialog box and com-
pare them with the data sets in Figure 3-7.

Manage Data Sets HE

Mew...

Farameter

Copy...

datazet_1.pgo
5 Stream: datazet_1.dat Device: 0=FFDO0000-0<FFDO0OFFF

=By 75% Even - 25% Odd Edit...
P Elrg Profile autput: datazet_Z pgo
I =5, Stream: datazet 2 dat Device: OxFFDO0000-0=<FFDOOFFF Delete...
=&y 100% Even - 0% Odd

----- Elrg Profile autput: datazet_3.paa Dielete All...
----- =5, Stream: datazet_3.dat Device: 0=FFOO0000-0xFFDOOFFF

il

— Optimization level:

J

Smallezt code Current walue: I'I oo Fastest code

] I Cancel |

Figure 3-7. Expanded Data Sets

VisualDSP++ 5.0 Getting Started Guide 3-17

Exercise One: Using Profile-Guided Optimization

If your data sets match those in Figure 3-7, you have the data sets
needed to optimize the program.

9. Click OK to save the data sets and close the dialog box.

You are now ready to create .pgo files.

Step 5: Create PGO Files and Optimize the
Program

Now that you have configured the data sets, you are ready to optimize
your program.

From the Tools menu, choose PGO and then Execute Data Sets, as
shown in Figure 3-8.

| Tools

-

Linear Profiling
Expert Linker g
Flash Prograrmmer...

PGO Manage Data Sets,,, |

Execute Data Sets [|

Figure 3-8. Execute Data Sets Menu Option

Several things happen during the execute process. First, the project is built
with the -pguide switch, which enables the collection of the PGO data
that is later fed back into the compiler. The compiler makes default
assumptions about which sections of code will be most commonly exe-
cuted. Next, the resulting executable is run once with each data set. While
the program is running, the simulator monitors the paths of execution

3-18 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

through the program, and the number of cycles used in the execution. As
stated before, this information is stored in the .pgo file that you specified
when creating each data set.

Once the program has been run with each data set, the project is
recompiled. This time, however, the compiler uses the information found
in the .pgo files to optimize the resulting executable. This optimized exe-
cutable is then run with the input provided by each data set, and again,
the simulator monitors each execution.

You are now ready to examine the results of the optimization.

Step 6: Compare Execution Times

When the execution is completed, an XML report of the PGO optimiza-
tion results is generated and displayed in a browser window. This file is in
the pgo\debug folder and is named PgoReport.date and time.xm1 (for
example, PgoReport.20031027145428.xm1).

At the top of the report is a header, shown in Figure 3-9.

Profile Guided Optimization Results

Generated on: Thu Nov 11 13:40:02 2004
Application: D:hProgrsm Files\WVisualDSP 4.0%EBlackfin'Exswmples’ Tutoriallpgo' Debugh PyoExanple. dxe
Project: D:hProgram FileshWisualDSP 4.0%Blackfin'Examples) Tutoriallpgol PgoExawple.dp]
Optimization level: 100
Average cycle reduction: 15.02%

Figure 3-9. PGO Results — Report Header

The header provides basic information such as the project name, location,
and when the report was generated. Also listed is the optimization level
(which you specified with the slider bar in the Manage Data Sets dialog

Visual DSP++ 5.0 Getting Started Guide 3-19

Exercise One: Using Profile-Guided Optimization

box, Figure 3-2 on page 3-8), and an average result. The Average result is
the difference in total cycle counts on all executions from before and after

optimization.

The Average result obtained on your machine may vary slightly
from the result shown in Figure 3-9.

The header is followed by information about each data set (see
Figure 3-10).

Data Set: 50% Even - 5020 Odd

Command line:

Input stream:

PGO output:

Before optimization:
after optimization:
Cycle reduction:

File: D:%Program Files\WisualDSP 4.0%Blackfin)Exawples) Tutoriallpgoldataset_1.dat
Device: OxFFDOOOOO-O0xFFDOCOFFF

D:YProgram Files\WisualDSP 4.0%Blackfin' Exsmples) Tutorial' pgo'dataset_1.pgo
7875 cyoles

7875 cyoles

0.o00%

Data Set: 75% Even - 25%0 Odd

Command line:

Input stream:

PGO output:

Before optimization:
after optimization:
Cycle reduction:

File: D:%Program Files\WisualDSP 4.0%Blackfin)Exawples) Tutoriallpgoldataset _2.dat
Device: OxFFDOOOOO-O0xFFDOCOFFF

D:YProgram Files\WisualDSP 4.0%Blackfin' Exsmples) Tutorial' pgo'dataset_2.pgo
8713 cyoles

7043 cyocles

19.17%

Data Set: 1002 Even - 0% Odd

Command line:

Input stream:

PGO output:

Before optimization:
after optimization:
Cycle reduction:

Figure 3-10

File: D:%Program Files\WisualDSP 4.0%Blackfin)Exawples) Tutoriallpgoldataset _3.dat
Device: OxFFDOOOOO-O0xFFDOCOFFF

D:YProgram Files\WisualDSP 4.0%Blackfin' Exsmples) Tutorial' pgo'dataset_3.pgo
9539 cyocles

6211 eyoles

34.59%

. PGO Results — Data Sets

The file information, including the Data Set file name, Input stream file
name, and PGO output file name, is listed first. Then the results of opti-
mization are shown. The number of cycles needed to run the original

3-20

Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

build with this data set (Before optimization) is followed by the number
of cycles needed to run this data set on the optimized build (After optimi-
zation). Note that the number of cycles may vary on different machines.

Finally, the percent difference between the two builds (Result) is listed. A
positive percentage indicates that the optimized build ran faster than the

original build.

The Execution Output section of the log appears first. Figure 3-11 shows
selections from the execution output.

Execution Qutput

Building application with PGO support...
Euild complete.

Profiling Data Z2et: "50% Ewven - 50% Odd™...
Loading application: PgoExample.dxe
Setting command line:
Creating input stream: File: dataset_l.dat —»> Device: OxFFDOOOOO-0x
Zetting PGO output: dataset l.pgo
Running application: PgoExample.dxe
Ereakpoint Hit at <ffal074e>

Figure 3-11. PGO Results — Execution Output Sample

This information is the output that appeared in the Console view of the
Output window while the PGO was running. The output includes the
basic events that occurred during execution.

VisualDSP++ 5.0 Getting Started Guide 3-21

Exercise One: Using Profile-Guided Optimization

The Build Output section appears next at the bottom of the report. This
section contains build output for each build. Figure 3-12 shows a build
output sample.

Pre-Optimization Build Output

———————————————— Conficuration: PgoExample - Debug---—-————--—————-—-
WPgoExanmple. o

Linking. ..

Euild completed successiully.

Post-Optimization Build Output

———————————————— Configuration: PgoExample - Debug——-——-———-———-——-————
yPgoExample. o

Linking...

Euild completed successiully.

Figure 3-12. PGO Results — Build Output Sample

This information is the output that was displayed in the Build view of the
Output window while the PGO was running.

This output information shows how effective PGO can be. As shown in
Figure 3-9 on page 3-19, the optimized executions used approximately
18% fewer cycles than the original executions. The gain in performance is
significant, especially given the ease with which it was accomplished.

You are now ready to begin Exercise Two.

3-22 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

Exercise Two: Using Background
Telemetry Channel

A background telemetry channel (BTC) enables you to exchange data
between a host and target application without halting the processor. This
mechanism provides real-time visibility into a running program. Uses for a

BTC include:

* Monitoring program status without halting the processor

Viewing algorithm output in real time

Injecting data into a program
* Streaming real-time data to a file (data logging)
* Providing I/O, either standard or user-defined

In this exercise, you:

* Run the BTC Assembly demo, designed to demonstrate the basic
functionality of BTC.

e Run the BTC FFT demo, which demonstrates the transfer of data
from the Blackfin EZ-KIT Lite over background telemetry
channels.

Running the BTC Assembly Demo

The BTC assembly demo is designed to demonstrate the basic functional-
ity of BT'C. The program defines several BT'Cs to allow the transfer of
data over the BTC interface while the processor is running. For example,
one channel counts the number of interrupts that have occurred, and
another counts the number of times a push button is pressed. See the
Btc_AsmDemo.asm header for more details. You will use the BTC Memory
window in the IDDE to view the data in each channel.

Visual DSP++ 5.0 Getting Started Guide 3-23

Exercise Two: Using Background Telemetry Channel

Figure 3-13 provides an overview of data transfer over the BTC interface
in the BTC assembly demo.

BTC Assembly Demo

Host [temias) (STl
wrr(iatz or Debug Agent
i btc_poll:
Ir?ittci:glli;gs Checks for
incoming
BTC commands
Y
Target Reads or writes
BTC data
- J

Figure 3-13. Data Transfer in the Assembly Demo

Step 1: Load the BTC_AsmDemo Project
1. Start VisualDSP++ and connect to the ADSP-BF533 EZ-KIT Lite.

If you use the Session Wizard, select ADSP-BF533 for a processor,
then choose either Emulator or EZ-KIT Lite for the session type,
depending on how you want to connect to the kit (Emulator:

HPPCI-ICE or HPUSB-ICE, EZ-KIT Lite: Debug Agent).

3-24 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

If you chose Emulator for the session type you need to choose
either ADSP-BF533 via HPPCI-ICE or ADSP-BF533 via
HPUSB-ICE as the platform, depending on which emulator type is
available.

If you chose EZ-KIT Lite as the session type, choose ADSP-BF533
EZ-KIT Lite via Debug Agent as the platform type.

2. Open the Btc_AsmDemo.dpj project, under Analog Devices in:

VisualDSP 5.0\Blackfin\Examples\ADSP-BF533 EZ-Kit
Lite\Background_Telemetry\AsmDemo

For details about loading a project, see “Step 1: Start VisualDSP++
and Open a Project” on page 2-3.

You are now ready to examine BTC commands.

Step 2: Examine the BTC Commands

1. Open the Btc_AsmDemo.asm file by double-clicking on it in the
Project window.

2. Scroll down to the section labeled BTC Definitions in the com-
ments (see Figure 3-14). Note the five channels defined..

S AT LTI E LTSS SIS
A BIC Definitions
A
BTC_MAP_ BEGIM

s Channel MName, Starting Address, Length

BTC_MAP_EMNTRY('Timer Interrupt Counter', timerCounter. D=z00004)
ETC_MAP_ EWNIRY('PF10 Counter'. pfliCounter, 0x=00004)
BTC_MAP_ENTRY('PF11 Counter'. pflliCounter, D=z00004)
BTC_MAP_ENTRY ('256 byte channel (PF11)', pfllarray. 0z00100)
ETC_MAP_ENTRY('4k byte channel'. arrayl, 0=01000)

BTC_MAP_EMWD

Figure 3-14. BTC Channel Definitions

Visual DSP++ 5.0 Getting Started Guide 3-25

Exercise Two: Using Background Telemetry Channel

3. Scroll down to the main program.

_main:

Twenty-four lines below the _main: label is the command to ini-
tialize BTC, call _btc_init: (shown in Figure 3-15).

S
L4 maln program
S
.section program;
.extern ldf_stack_end:
.glohal _main:

s initialize the stack pointer
sp.h = 1df_stack_end:
sp.l = 1df_stack_end;

s setup the EVT

[--sp] = rets:

call initVectorRegs:
rets = [sp++];

<7 init LEDs

[--sp] = rets:

zall 1nitLEDs:

rets = [sp++];

getup the Core Timer
[--sp] = rets:

call initCoreTimer;
rets = [sp++];

#7 setup the Programmahble Flags
[--sp] = rets:

call initProgFlags:
rets = [sp++];

initialize the BTC
[--sp] = rets;

= |

call bte_init;

rets = [sp++]:

Figure 3-15. BTC Initialize Command

For more information about _btc_init, refer to the Visual DSP++

Help.

In this example, the call _btc_pol1 command is placed in the
EVT15_L00P, defined below main and shown in Figure 3-16.

3-26

Visual DSP++ 5.0 Getting Started Guide

EVT15_LOOF:
nop;
nop;
nop:
[-——=p] = rets=s;

o | call btc poll;

rets = [sp++]:

nop;

nop:

nop:

Jump EVT15_TOOE:
_main.end:

Figure 3-16. BTC Polling Loop

Advanced Tutorial

Refer to the online Help for more information about _btc_po11.
This function is called when the evt15 interrupt is triggered. This
interrupt has the lowest priority on this particular processor.

Now that you have seen how BTC has been added to this example,

it is time to build the project.

4. On the toolbar, click Rebuild All (3) or choose Rebuild All

from the Project menu.

This command builds the project and automatically downloads the
application to the target. For details about building projects, refer
to “Exercise One: Building and Running a C Program” on

page 2-3.

Visual DSP++ 5.0 Getting Started Guide

3-27

Exercise Two: Using Background Telemetry Channel

Step 3: Set Up the BTC Memory Window and View Data

1. From the View menu, choose Debug Windows and BTC Memory
as shown in Figure 3-17.

| View
Status Bar

Editor Tab
Workspaces ¢

Project Window
Qutput Window

| DebugWindows &_| Disassembly
VDK Windows 4 Trace
Lol Locals
&' Expressions
&) Call Stack
e
Plot »

| BTCMemory

Image Viewer...

Figure 3-17. BTC Memory Menu Option

3-28 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

The BTC Memory window, shown in Figure 3-18, is displayed.

BTC Memory [Hexd] EE

ITimer Interrupt Counter j

timerCounter ﬂ
[FOOO1514] 00 00 00 00

(=l

Figure 3-18. BTC Memory Window

The BTC Memory window displays BTC data in real time. Data is
read from the target when the IDDE issues a read request, and is
written when a value is edited in the BTC Memory window. You
can adjust the rate at which the IDDE requests data by changing
the refresh rate.

VisualDSP++ 5.0 Getting Started Guide 3-29

Exercise Two: Using Background Telemetry Channel

2. Right-click in the BTC Memory window to display a menu of

features, shown in Figure 3-19.

GoTo..

Show hMap
Lock Columns
Select Format r

Fefresh Rate r
Auto Refresh
Channel Timeout r

Allow Docking
Close

Float In Main WWindow

Figure 3-19. BTC Memory Window Right-Click Menu

Each menu option is described as follows.

Go To — Enables you to enter an address or browse for a symbol,

and displays memory starting at that address in the BTC Memory
window. If the address entered is outside the range of the defined

BTC channels, an error message is displayed.

Show Map — When this option is enabled, a map of all the defined
channels is displayed, as shown in Figure 3-20.

3-30 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

BTC Memory [Hex8] % |
MName |SMHAddmss |Lﬂnmhﬁn8weﬂ
Tirner Interrupt Counter Oxf800298
PF10 Cournter [ffa0029:c 04
FF11 Counter Ixtf3002a0 (x4
256 byte channel (PF11) Oxff3002a4 100
4k byte channel (300324 Ox1000
< | B

timerCounter ﬂ

[FFE00295] 00 Q0 00 00

r of

Figure 3-20. BTC Memory Window With Map

Double-clicking on a channel displays the corresponding memory
in the BTC Memory window. When Show Map is disabled, you
can choose a channel from a drop-down list selected from the BTC
Memory window’s right-click menu (Figure 3-19).

Lock Columns — Locks the number of columns displayed in the
BTC Memory window.

* If this option is not enabled, Visual DSP++ displays as many
columns as the window’s width can accommodate.

 If this option is enabled, the number of columns does not
change, regardless of the window’s width. For example, if
four columns are displayed when the option is enabled, four

Visual DSP++ 5.0 Getting Started Guide 3-31

Exercise Two: Using Background Telemetry Channel

columns are displayed, regardless of the window’s width.
See Figure 3-21, Figure 3-22, and Figure 3-23 for
comparisons.

Figure 3-21 shows the original window.

BTC Memory [Hex8] x|

| 256 byte channel (PF11) |

[FFEO0Z2A4] OO0 OO OO OO OO OO OO0 OO0 @&
[FFEO0ZAC] OO0 OO0 OO OO OO 0O o0 0o
[FFEO002E4] OO0 OO OO OO OO OO OO0 0o
[FFEO0ZBC] OO0 OO0 OO OO OO 0O o0 0o
[FFEO02C4] 00 OO OO OO OO OO o0 0o
[FFEO0Z2CC] 00 00 OO0 OO OO0 0O o0 oo
[FFEO02D4] OO0 OO OO OO OO OO OO0 0o
[FFEO0ZDC] OO0 OO0 OO0 OO0 OO0 0O o0 oo _J
[FFEO0ZE4] OO0 OO0 OO OO OO OO o0 0o
[FFEOO0ZEC] 00 OO0 0O 0O OO 0O o0 oo
[FFEO0ZF4] OO0 OO OO OO OO OO OO 0o
[FFEO0ZFC] 00 OO0 OO0 0O 0O 0O o0 oo
[FFE00304] OO0 OO OO OO OO OO OO0 0o
[FFEO030C

Qo 00 O0 00 QOO oo oo oo .
KN _>I_|

Figure 3-21. Original Window Width

[T SN T T T ST T ST N ST S S

Figure 3-22 shows the original window expanded with Lock
Columns enabled.

Figure 3-23 shows the original window expanded with Lock

3-32 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

BTC Memaory [Hex8] x|

| 256 byte channel (PF11) |

[FFE002244] 00 00 00 00 B
[FFE00246] 00 00 00 00
[FFE002AC] 00 00 00 00
[FFE002E0] 00 00 00 00
[FFE002E4] 00 00 00 00
[FFE002EG] 00 00 00 00
[FFE002EC] 00 00 00 00
[]
[]
[]
[]
[]
[]
[]

FraoozcZO] oo oo oo oo _I
FrFzo0zC4] 0o 00 0o oo
FFaOOzCs] 0o 00 00 0o
FrFaOo0zCC] oo 0o oo oo
FraoozDo] oo oo oo oo
FFzO0zD4] 00 00O 00 00
FrFaOoOzDE] 0o 00 00 oo

4 o

Figure 3-22. Expanded Window With Lock Columns Enabled

Visual DSP++ 5.0 Getting Started Guide 3-33

Exercise Two: Using Background Telemetry Channel

Columns disabled.

BTC Memaory [Hex8] X |
| 256 byte channel (PF11) -]

[FFE00244] 00 OO 0O 00O 0O 00 00 OO0 o0 _:J
[FFaO0zaAD] OO0 OO0 OO OO OO OO0 00 o0 oo
[FFS00ZE&] 00 OO 0O 00O OO 00 00 OO0 oo
[FFEO0ZEF] 00 OO 0O OO OO 00 00 OO0 oo
[FFS002C3] 00 OO0 00 00 0o 00 o0 oo oo
[FFEO00Z0D1] 00 OO 0O OO OO 00 00 oo oo
[FFS00ZDAT 00 OO 0O 00 OO0 00 00 oo oo
[FFEO0ZE3] 00 OO 0O OO OO 00 00 OO0 oo _J
[FFSO00ZEC] 00 OO0 00 o0 0o o0 o0 oo oo
[FFEO00ZFS] 00 OO 00O 00 OO 00 00 oo oo
[FFSO0ZFE] 00 OO0 0O 00 0O 00 o0 oo oo
[FFEO00307] 00 OO 0O OO0 OO 00 00 oo oo
[FFS00310] 00 OO0 00 o0 oo o0 o0 oo oo
[

FFEOO0319] 00 0D OO OO OO0 o0 00 oo oo
w
KN _>I_|

Figure 3-23. Expanded Window With Lock Columns Disabled

Select Format — Enables you to select how memory is displayed.
The choices are 8-bit, 16-bit, and 32-bit hex.

Refresh Rate — Enables you to specify the rate at which the BTC
Memory window is refreshed. The IDDE issues a read request
based on the rate you select. Select one of the preexisting options
(1, 5, 10, or 15 seconds), or use a custom refresh rate. The custom
rate is specified in milliseconds.

Auto Refresh — Automatically refreshes the BTC Memory win-
dow, based on the refresh rate you select. If this option is disabled,
the BTC Memory window is not refreshed until the program is

3-34

Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

halted.

Channel Timeout — The amount of time that VisualDSP++ will
wait for a memory request to the target. After this time, the IDDE
stops polling the BTC to prevent a hang.

Allow Docking — Docking locks the BTC Memory window to a
fixed location (for example, the right side of the workspace).
Disabling docking enables you to position the window anywhere in
the workspace, including on top of docked windows.

Close — Closes the BTC Memory window.
Float In Main Window — Disables docking and centers the BTC

Memory window in the center of the workspace. You can then
move it to any location, but it will not dock. If you move it to a
location shared by a docked window, the docked window sits on

top.
3. Select the Timer Interrupt Counter channel from the drop-down

list in the BTC Memory window. Set the Refresh Rate to 1 sec-
ond, and enable Auto Refresh.

4. Run the program. Notice how the values in the BTC Memory win-
dow are updated each second.

5. Select the PF10 Counter channel. This channel counts the number
of times that the PF10 button on the ADSP-BF533 EZ-KIT Lite
board is pressed. Press this button and watch the PF10 Counter
increment in the BTC Memory window.

@ For the PF10 button to work, the SW9.3 switch on the
ADSP-BF533 EZ-KIT Lite board must be set to ON.

You have now seen some of the basic functionality of BTC.

6. Halt the program and close the Btc_AsmDemo project.

Visual DSP++ 5.0 Getting Started Guide 3-35

Exercise Two: Using Background Telemetry Channel

You are now ready to run the BTC FFT demo.

Running the BTC FFT Demo

The BTC FFT demo demonstrates the transfer of data from the Blackfin
EZ-KIT Lite over background telemetry channels. The program generates
an input sine wave that increases in frequency over time, and performs a

Fast Fourier Transform (FFT) on this input signal. The input and output
data are transferred to the IDDE over BTC.

Figure 3-24 provides an overview of the data transfer in the BTC FFT

demo.
4 N
FFT Demo
Generate > Process
Input Output
» Time
Y \ 4
Copy inputto Copy output to
transfer transfer
\ /

Figure 3-24. Data Transfer in the BTC FFT Demo

For more information, see the included readme.txt file.

3-36

Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

Step 1: Build the FFT Demo

1.

®

Start Visual DSP++ and connect to ADSP-BF533 via HPPCI-ICE,
ADSP-BF533 via HPUSB-ICE if you connect by way of an emula-
tor, or an ADSP-BF533 EZ-KIT Lite via Debug Agent if you
connect by way of an EZ-KIT Lite.

If you already ran through the first BTC demo, you do not need to
create a new session via the session wizard. Simply connect using
the session you already created.

Open the FFT demo, located in the following folder.

\Program Files\Analog Devices\VisualDSP 5.0\
Blackfin\Examples\ADSP-BF533 EZ-Kit
Lite\Background_Telemetry\fftDemo

Build the FFT project by clicking Rebuild All (4) on the toolbar
or by choosing Rebuild All from the Project menu.

This command builds the project and automatically downloads the
application to the target. For more details about building projects,
refer to “Exercise One: Building and Running a C Program” on
page 2-3.

Visual DSP++ 5.0 Getting Started Guide 3-37

Exercise Two: Using Background Telemetry Channel

Step 2: Plot BTC Data
1. Open the BTC Memory window if it is not already open.

2. From the View menu, choose Debug Windows, Plot, and then
Restore, as shown in Figure 3-25.

View
Status Bar

Editor Tab

Workspaces ¢
Project Window
Qutput Window

| Debug Windows & | Disassembly
VDK Windows » Trace

Lol Locals

&' Expressions

iz) Call Stack

GE

| Plot New..

Bestore...

BTC Memary

Image Viewer...

Figure 3-25. Plot Restore Menu Option

The Restore command opens the Select Plot Settings File dialog
box, shown in Figure 3-26.

3-38 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

Select Plot Settings File m

Look in: I@BTC_fﬂ j = £ E~

Debug
B
e8] fit_outwvps

File name: Iﬁ't_in.vps ﬂ Open I
Files of type: IPIDt Settings (vps) LI Cancel |

Figure 3-26. Select Plot Settings File Dialog Box

Select the fft_in.vps file and open it. A plot window appears. Fol-
low the same procedure to restore the fft_out.vps file.

VisualDSP++ 5.0 Getting Started Guide 3-39

Exercise Two: Using Background Telemetry Channel

3. Right-click in the FFT In plot window and select Auto Refresh
Settings to open the Auto Refresh Settings dialog box, shown in
Figure 3-27.

Auto Refresh Settings |

— Options

© Use run/halt method

& Use BTC

Refresh rate (msec) |150

[3 Channels defined)]

—BTC Modes

& Transfer an array of data
= Sample atest point over time

e dite et (nm chatmel requite)

—Data Log File

Conwvert to ASCI .. I_gggg_gg

™ Missing data indicator

0]:4

Cancel |

Figure 3-27. Auto Refresh Settings Dialog Box

This dialog box enables you to configure the plotting tool to plot
the BTC data in realtime.

3-40

Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

4. Complete the dialog box as follows.
In the Options group box, select the Use BTC option.

The Use run/halt method option plots the data, but refreshes the
plot window only when the program is halted.

The Refresh rate enables you to choose the interval between plot
window refreshes. Use the default setting of 150 milliseconds.

The BTC Modes group box includes two methods of transferring
data to the plot window:

* Transfer an array of data (default) — This method uses the
btc_write_array function. Data is captured at a specific
point in the DSP application, copied to a transfer buffer,
and held until the host reads the data.

* Sample a test point over time — This method uses a data
buffer in the DSP program and the btc_write_value func-
tion. The sampled input data value is copied to the data
transfer buffer and read according to the plot refresh rate.
The minimum size of the transfer buffer is the product of

the plot refresh rate and the data sampling rate
(PRR * DSR).

Use the default method, Transfer an array of data, for transferring
data.

In the Data Log File group box, the Convert to ASCII button
enables you to convert log data to ASCII format. This subject is
discussed in more detail in “Step 3: Record and Analyze BTC
Data” on page 3-43.

5. Click OK to close the Auto Refresh Settings dialog box.

6. Enable the Use BTC option in the FFT Out plot window as you
did in step 4.

VisualDSP++ 5.0 Getting Started Guide 3-41

Exercise Two: Using Background Telemetry Channel

7. Right-click in both plot windows and enable Auto Refresh.

A toolbar appears at the top of each plot window, as shown in
Figure 3-28. This toolbar enables you to record BTC data to a file

and play back BTC data from a file.

R -
® [= |sample.bin J

FFT In

Amplitude

Time (msec)

BTC Data Lost Liwve Line Flaot

Figure 3-28. Plot Window With Toolbar

8. In the FFT In plot window, enter a file name, such as Sample.bin,

in the text box.

9. Run the program.

Both plot windows should display data being plotted in realtime.

3-42 Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

Step 3: Record and Analyze BTC Data

1.

In the FFT In plot window toolbar, click Record (@). All data in
the FFT_Input channel is logged to a file until you stop recording.

In the BTC Memory window, select the FREQ STEP SIZE channel.

First, right-click and change the format to Hex32. Then change the
value in memory from 10 to 100, and notice its effect on the plots.
If you would like, try using other values.

In the FFT In plot window toolbar, click Stop (‘ M) to stop
logging BTC data.

Halt the program.
In the FFT In plot window toolbar, click Play (p).

The plot window displays the logged data. The window should
appear as if the FFT program is still running.

Right-click in the FFT In plot window, open the Auto Refresh
Settings dialog box, and click the Convert to ASCII button. The
Convert Log File dialog box, shown in Figure 3-29, is displayed.

Visual DSP++ 5.0 Getting Started Guide 3-43

Exercise Two: Using Background Telemetry Channel

Convyert Log File K |

Input file

I&'\BTE ExampleshBFE3EABTC_ffASample.bin |

Output file

Is'*.BTE EwxamplestBFE3ENBT C_fSample.dat |

D'ata set zelection

ak.

Cancel |

Figure 3-29. Convert Log File Dialog Box

3-44

Visual DSP++ 5.0 Getting Started Guide

Advanced Tutorial

7. Complete the dialog box as follows.

In the Input file text box, click the browse button (_I) to select
Sample.bin.

Sample.bin has only one data set, which is selected when you enter
the Input file name. If Sample.bin contained more than one data
set, you would be able to choose among them in the Data set
selection drop-down list.

Next, click the file browse button (_-|) next to the Output file text
box. The Select Log Output File dialog box that appears should
have the file name Sample.dat already in the File name text box.

Click Save.

If your window matches Figure 3-30, click OK. The log file is
converted from binary to ASCII, which is readable by other
programs.

T 1]

Input file

ISampIe.I:uin _I

Clukput file

IS ample. dal _I

Data zet zelection

IData Setl j

] Cancel |

Figure 3-30. Completed Convert Log File Dialog Box

Visual DSP++ 5.0 Getting Started Guide 3-45

Exercise Two: Using Background Telemetry Channel

8. Launch Microsoft Excel. Then open the Sample.dat file and follow
the instructions in the Text Import Wizard.

The .DAT file is a tab-delimited file. Importing the file into Excel or

another program, such as MATLAB, enables you to analyze or
modify the log file.

You have now completed the BTC FFT demo and the Advanced Tutorial.

3-46 Visual DSP++ 5.0 Getting Started Guide

| INDEX

A

Add Files dialog box, 2-21, 3-25
advanced tutorial

overview, 3-1

PGO steps, 3-2
Auto Refresh command, 3-42
auto refresh rate, setting (for BTC), 3-34
Auto Refresh Settings dialog box, 3-40

B

background telemetry channels
channel definitions, 3-25
commands, 3-25
converting BTC log data to ASCII, 3-41
defined, 3-23
map of, 3-30
map of defined channels, 3-30
Memory window, 3-29
modes of transferring data, 3-41
polling loop command, 3-26
running assembly demo, 3-23
using, 3-23
basic tutorial
features of, 2-2
overview, 2-1
Blackfin processor simulators
cycle-accurate interpreted, 1-7
functional compiled, 1-7
bookmarks, adding to source files, 2-23

breakpoint symbols
red circle, 2-11
yellow arrow, 2-11
BTC, see background telemetry channels
BTC FFT demo
building, 3-37
plotting BTC data, 3-38
running, 3-36
Build Project command, 2-7
Build view, of Output window, 2-7, 2-9

C

channels, BTC, 3-25
channel timeout, setting (for BT'C), 3-35
code development tools
features, 1-4
overview, 1-2
commands
BTC, 3-25
BTC polling loop, 3-26
Build Project, 2-7
Execute Data Sets, 3-18
initialize BTC, 3-26
Lock Columns (for BTC), 3-31
Rebuild All, 2-7, 3-27, 3-37
Restore, 3-38
Select Format (for BTC), 3-34
Show Map (for BTC), 3-30
View Sample Count, 2-49
comment characters, moving in source files,

2-23

Visual DSP++ 5.0 Getting Started Guide

I-1

INDEX

compiled simulators, 1-7
Compile page, 2-19
console view, of Output window, 2-14
converting BTC log data to ASCII, 3-41
Convert Log File dialog box, 3-43
C programs

building and running, 2-3

modifying to call assembly routine, 2-15
custom hardware, 1-6
cycle-accurate simulators, 1-7

D

Data Cursor command, 2-39
data log file (for BTC), 3-41
data sets
attaching to input streams, 3-11
configuring (for PGO), 3-6
configuring with the Copy command,
3-16
plotting, 2-33
debug sessions
creating, 2-10
emulator type, 1-7
EZ-KIT Lite type, 1-6
features, 1-3
simulator type, 1-7
tutorial, 2-9
demos, running
BTC assembly, 3-23
BTC FFT, 3-36

dialog boxes

Add Files, 2-21, 3-25

Auto Refresh Settings, 3-40

Breakpoints, 2-12

Convert Log File, 3-43

Edit Data Set, 3-9

Edit PGO Stream, 3-11

Find, 2-22

Manage Data Sets, 3-8, 3-17

Plot Configuration, 2-33, 2-43

Project Options, 2-18, 2-19

Select Plot Settings, 3-38
Disassembly window

adding and deleting breakpoints, 2-13

information displayed, 2-11
dotprodasm.ldf

modifying, 2-25

viewing, 2-25
dotprodc

automatically loading, 2-11

building, 2-7

running, 2-14
dotprod_main.c

modifying to call a_dot_c_asm, 2-22

opening, 2-8

using to find error, 2-8
dot_product

rebuilding, 2-29

running, 2-30
dot_product_asm, building the project,

2-17

E

Edit Data Set dialog box, 3-9

editor windows, 2-8, 2-23, 3-35
Edit PGO Stream dialog box, 3-11
emulators, 1-7

Enable optimization check box, 2-19
Execute Data Sets command, 3-18
execution units, definition of, 2-49

[-2

Visual DSP++ 5.0 Getting Started Guide

exercises

building and running C programs, 2-3

linear profiling, 2-45

modifying a C program to call an
assembly routine, 2-15

plotting data, 2-31

using background telemetry channels
(for BTC), 3-23

using profile-guided optimization

(PGO), 3-2

F

Fast Fourier Transform (FFT), 2-42, 2-44
FFT Magnitude command, 2-42, 2-44
files

data log file (for BTC), 3-41

Adf, 2-1

.PGO, 3-18
Find dialog box, 2-22
finite impulse response (FIR) filter, 2-31
FIR program

global data arrays, 2-32

running, 2-37

viewing the filter results, 2-37
functional compiled simulators, 1-7

G

Generate assembly code annotations check
box, 2-19

Generate debug information check box,
2-19

H
histogram, defined, 2-49

I

initialize BTC command, 3-26
input data sets, entering, 2-34

INDEX

input streams, attaching to data sets, 3-11
integrated development and debugging
environment (IDDE), 2-1

J

JTAG emulators, 1-7, 2-45

L

linear profiling
collecting and examining data, 2-48
enabling, 2-46
linear and statistical defined, 2-45
results of analyzing the FIR program,
2-48
viewing profile data for the FIR function,
2-50
Linear Profiling window (empty), 2-47
linker description file (LDF), folder, 2-1
Load executable after build command, 2-9
loading
PGO projects, 3-4
projects, 2-3
Lock Columns command (for BTC), 3-31

M

magnifying selected regions, 2-37
Manage Data Sets dialog box, 3-8, 3-17
messages
Output window, 2-11
project is up to date, build completed
successfully, 2-7

N

new projects, creating, 2-15

(@)
% of Histogram data, defined, 2-49

Visual DSP++ 5.0 Getting Started Guide

I-3

INDEX

optimizing, programs with PGO, 3-18
output data sets, entering, 2-34
Output window, 2-7

Build view, 2-7

Console view, 2-14

information displayed, 2-11

viewing a linker error, 2-25

p

PGO, see profile-guided optimization
(PGO)
PGO files, creating, 3-18
Plot Configuration dialog box, 2-33, 2-34,
2-43
plotting
BTC data, 3-38
data, 2-31
plot windows
after running the FIR program, 2-37
before running the FIR program, 2-35
FFT In (for BTC), 3-42
magnified result, 2-38
magnifying data points, 2-39
opening, 2-33
selecting a region to magnify, 2-38
toolbar (for BTC), 3-42
viewing data points, 2-39
viewing signals in the frequency domain,
2-42, 2-44
zooming in on a region, 2-37
preferences, specifying, 2-6
Preferences dialog box, 2-6, 2-16
processor
hardware model (emulator), 1-7
software model (simulator), 1-7

profile-guided optimization (PGO)
attaching an input stream, 3-11
build output results report, 3-22
configuring a data set, 3-6
configuring data sets, 3-6
configuring data sets with the Copy
command, 3-16
data set information results report, 3-20
execution output results report, 3-21
header results report, 3-19
loading PGO projects, 3-4
using, 3-2
Project Options dialog box
displayed, 2-18
Project page, 2-18
projects
adding files to dot_product_asm, 2-21
building dotprodc, 2-7
building dot_product, 2-29
creating new, 2-15
dotprodc files, 2-5
managing, 1-1
modifying source files, 2-22
opening, 2-3, 3-4
opening (PGO), 3-4
options, 2-18
project source files
adding, 2-21
project source files, editing, 2-22
Project Wizard, running, 2-16

R

Rebuild All command, 2-7, 3-27, 3-37

recording, BTC data, 3-43

refresh rate, setting for BTC Memory
window, 3-34

Reset Zoom command, 2-39

Restore command, 3-38

I-4

Visual DSP++ 5.0 Getting Started Guide

S

Select Format command (for BTC), 3-34
Select Plot Settings File dialog box, 3-38
Show Map command (for BTC), 3-30
simulators, 1-7
source files

adding to projects, 2-21

modifying, 2-22
Statistical Profiling window, 2-45

T

text import wizard, 3-46
timer interrupt counter, setting (for BTC),
3-35
toolbars
buttons (VisualDSP++), 2-2
plot windows (for BTC), 3-42
transferring data, modes of (for BTC), 3-41

A%

views
Build, 2-7, 2-9
Console, 2-14

INDEX

View Sample Count command, 2-49
Visual DSP++

debug sessions, 1-6

features, 1-1

main window, 1-6

simulators, 1-7

starting, 2-3

toolbar buttons, 2-2

W

windows
BTC Memory, 3-29
Disassembly, 2-11, 2-14
editor, 2-8, 2-23, 3-35
Linear Profiling, 2-46
Output, 2-8, 2-11
plot, 2-35, 2-37, 2-38, 2-39
Project Wizard, 2-16
Statistical Profiling, 2-45
wizards
Project Wizard, 2-16
Text Import, 3-46

Visual DSP++ 5.0 Getting Started Guide

I-5

INDEX

I-6

Visual DSP++ 5.0 Getting Started Guide

	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From the Web

	Printed Manuals
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Features and Tools
	VisualDSP++ Features
	Code Development Tools
	Connecting to a Debug Session

	2 Basic Tutorial
	Overview
	Exercise One: Building and Running a C Program
	Step 1: Start VisualDSP++ and Open a Project
	Step 2: Build the dotprodc Project
	Step 3: Run the Program
	Step 4: Run dotprodc

	Exercise Two: Modifying a C Program to Call an Assembly Language Routine
	Step 1: Create a New Project
	Step 2: Add Source Files to dot_product_asm
	Step 3: Modify the Project Source Files
	Step 4: Use the Expert Linker to Modify dot_prod_asm.ldf
	Step 5: Rebuild and Run dot_product_asm

	Exercise Three: Plotting Data
	Step 1: Load the FIR Program
	Step 2: Open a Plot Window
	Step 3: Run the FIR Program and View the Data

	Exercise Four: Linear Profiling
	Step 1: Load the FIR Program
	Step 2: Open the Profiling Window
	Step 3: Collect and Examine the Linear Profile Data

	3 Advanced Tutorial
	Overview
	Exercise One: Using Profile-Guided Optimization
	Step 1: Load the Project
	Step 2: Configure a Data Set
	Step 3: Attach an Input Stream
	Step 4: Configure Additional Data Sets
	Step 5: Create PGO Files and Optimize the Program
	Step 6: Compare Execution Times

	Exercise Two: Using Background Telemetry Channel
	Running the BTC Assembly Demo
	Step 1: Load the BTC_AsmDemo Project
	Step 2: Examine the BTC Commands
	Step 3: Set Up the BTC Memory Window and View Data

	Running the BTC FFT Demo
	Step 1: Build the FFT Demo
	Step 2: Plot BTC Data
	Step 3: Record and Analyze BTC Data

	I Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W

