
Audio Engineering Society
Convention Paper

Presented at the 119th Convention
2005 October 7–10 New York, New York USA

This convention paper has been reproduced from the author's advance manuscript, without editing, corrections, or consideration
by the Review Board. The AES takes no responsibility for the contents. Additional papers may be obtained by sending request
and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; also see www.aes.org.
All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct permission from the
Journal of the Audio Engineering Society.

 AN EFFICIENT ASYNCHRONOUS SAMPLING-RATE
CONVERSION ALGORITHM FOR MULTI-CHANNEL

AUDIO APPLICATIONS
Paul Beckmann1, Timothy Stilson2

Audio Rendering Technology Center (ARTC), Analog Devices, Inc.
1741 Technology Drive, Suite 400, San Jose, CA. 95110

1Paul.Beckmann@analog.com, 2Tim.Stilson@analog.com

ABSTRACT

We describe an asynchronous sampling-rate conversion (SRC) algorithm that is specifically tailored to multi-
channel audio applications. The algorithm is capable of converting between arbitrary asynchronous sampling-rates
around a fixed operating point, and is designed to operate in multi-threaded systems. The algorithm uses a set of
fractional delay filters together with cubic interpolation to achieve accurate and efficient sampling-rate conversion.

1. INTRODUCTION

Sampling-rate conversion is the process of converting a
discrete-time signal x[n] sampled at a rate FSin to
another signal y[m] sampled at a rate FSout. If the ratio
FSout/FSin is a constant then synchronous sampling-rate
conversion may be used. If the ratio FSout/FSin is only
approximately known at design time, irrational, or
slowly varying over time, then asynchronous sampling-
rate conversion is required. Asynchronous conversion
is a generalization of synchronous conversion, and
asynchronous conversion may be used in synchronous
applications, though there may be a computational or
memory penalty.

Synchronous sampling-rate conversion occurs when
there is a single master clock in the system. For
example, a portable audio player that accepts content at
a variety of sampling-rates FSin ={32 kHz, 44.1 kHz, 48
kHz} and must convert to a fixed output rate of FSout =
48 kHz. Asynchronous conversion occurs when there
are two or more separate clocks in the system. For
example, multiple digital sources – each with its own
sampling-rate – that must be jointly processed.

Audio applications requiring sampling-rate conversion
were once restricted to high-end mixing consoles and
post-production systems. However, with the advent of
streaming audio, networked audio players, and
compressed audio, sampling-rate conversion is being
incorporated into a variety of consumer products.

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 2 of 15

Furthermore, converting all audio content to a single
sampling-rate for subsequent equalization and effects
processing may simplify the design of products such as
home theater systems that must handle content in a
variety of sampling-rates.

Sampling-rate conversion can be done in either
hardware or software. Hardware implementations may
be standalone IC’s such as the Analog Devices AD1896
or peripherals integrated into audio specific digital
signal processors, such as the Analog Devices ADSP-
21364. Alternatively, software implementations are
attractive when the audio system already contains a
digital signal processor with spare resources or if the
sampling-rate conversion occurs between two software
modules such as an audio decoder and effects
processing.

This paper details a software implementation of a
sampling-rate conversion algorithm which is
particularly efficient at converting multiple audio
channels. The algorithm combines fractional sample
delay filters with cubic polynomial interpolation.
Although conceptually similar to existing methods, the
manner in which the calculations are partitioned is novel
and provides the computational efficiency.

The design of the algorithm is based upon the following
assumptions:

1. The clocks are asynchronous, but the
instantaneous ratio stays within a small range
during a run. The system will be designed for
an “ideal” ratio within that range, but will be
allowed to stray small distances from the ideal
ratio.

2. Linear phase.
3. Will operate on multi-channel signals, where

all the channels share the same sample times.

The paper is organized as follows. Section 2 presents
background information and compares our approach to
existing sampling-rate conversion algorithms. Section 3
describes the core algorithm which combines fractional
sample delay filters and polynomial interpolation.
Section 4 discusses generating a set of fractional delay
filters using a polyphase decomposition. These filters
provide the necessary delay, and when applicable,
lowpass filtering. The theoretical performance limits of
the algorithm are covered in Section 5. Section 6 then
discusses an actual implementation on a commercial
audio processor and presents MIPS and memory usage

for typical applications. Finally, Section 7 summarizes
the key innovations and benefits of the algorithm.

2. BACKGROUND

The subject of sampling-rate conversion, or
alternatively, bandlimited interpolation, has been
studied extensively, with just a portion of the work
being presented in [6], [3], [4], [7], and [8]. The
problem is usually attacked with what is called in [6] the
“analog interpretation” of sampling-rate conversion:

D/A A/D

inFS outFS

H(S)
[]nx []my()tx ()ty

The signal is converted to continuous-time at a rate FSin,
filtered by some filter H(s), which combines the
reconstruction filter of the D/A converter with the anti-
aliasing filter of the A/D converter, and then sampled at
a sampling-rate FSout to give the output y[m]. The
design challenge is to implement a discrete-time
simulation of this process both accurately and
efficiently.

It turns out [4] [7] that this design ends up, theoretically,
as the implementation of a time-varying discrete-time
filter, whose time-varying kernel is h(n – mTin), and
which is evaluated at a sampling period of Tout (where
Tin = 1/FSin, and Tout = 1/FSout). In other words, the
ideal time varying filter has a kernel consisting of
samples of the ideal continuous-time filter, spaced
according to the sampling-rates, and offset according to
the instantaneous “phase” of the converter. The major
differences between most techniques tend to be in the
ways that they implement the time-varying filter and/or
how they update the filter coefficients in order to be as
efficient as possible.

2.1. Synchronous vs. Asynchronous

Some techniques restrict the input and output sampling-
rate to a strict ratio, such that although the input and
output are different sampling-rates, their ratio stays
absolutely constant. These techniques are called
“synchronous”. They tend to make use of this
restriction by noting that the time-varying filter will thus

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 3 of 15

become predictable, and in the case of rational ratios, it
will assume only a finite set of configurations. Often
these are precomputed and stored in order to remove the
need to compute the time-varying filter settings at
runtime (trading off storage space for reduced
computation).

Many uses of sample-rate converters, however, do not
satisfy the synchronous assumption, so another class of
“asynchronous” sample-rate converter methods exist for
these situations. In these cases, the sampling-rate ratio
is assumed to be unknown at design time, probably
irrational, and probably time-varying. Therefore, the
configurations of the time-varying filter cannot be
completely predicted or precomputed, and some amount
of online computation of the filter settings must be
done. Asynchronous methods implement various
simplifications and/or approximations to make this
online computation as cheap as possible.

2.2. FIR vs. IIR

The ideal filter H(s) is not inherently either FIR or IIR,
being a continuous-time idealization, but the discrete-
time design must implement one or the other. IIR filters
have the advantage of being able to implement designs
with sharp features with much less computation than the
equivalent FIR filter, but with the drawback of not being
able to implement linear-phase designs (a system
whereby all frequencies are delayed the same amount
when passing through the system), being at best only
able to approximate them. High-end audio systems tend
to require linear-phase designs, so FIR-based techniques
tend to dominate that field, at the cost of more
expensive methods, both in computational cost and in
storage cost.

2.3. Comparison with Other Techniques

Crochiere and Rabiner [6] present a good background
for the sampling-rate conversion problem, and describe
the “classical” rational-ratio design of implementing the
ratio L/M as an upsampling by a factor of L followed by
appropriate filtering, followed by a downsampling by a
factor of M. This method tends to be useful for small
values of L and M, otherwise the intermediate
sampling-rate tends to get unwieldy. It is, however,
often used as the starting point for other design
derivations.

Ramstad [3] presents several methods, both FIR and
IIR, including one that will be very close to the method
derived in this paper. It first presents a straightforward
implementation of the h(n – mTin) filter, where a rational
ratio is assumed, and thus the coefficients of the runtime
filter are simply a periodic visiting of elements of a
precomputed array containing the required samples of
h(t). While in essence a synchronous technique, it can
be extended to asynchronous usage, at the penalty of
needing a very large array to reduce artifacts due to not
interpolating the coefficients. Further variations
include implementing an integer-ratio upsampler
followed by a low-order polynomial interpolator. The
design presented in this paper will end up quite close to
this design, but with some further optimizations.

Smith and Gosset [4] presents a design for h(t) based on
the windowed sinc function, and an asynchronous
conversion method which computes runtime FIR
coefficients for the variable filter via linear interpolation
from a precomputed table. The method is designed to
be used for a very wide range of conversion ratios with
a single table, which requires that the FIR coefficient
generation handle a particularly general case. The
design presented in this paper is closely related to the
Smith-Gosset method (though it is derived more like the
Ramstad method), but the derivation will make some
simplifying and/or restricting assumptions that allow the
resulting algorithm to be implemented more efficiently.

The Analog Devices AD1896 hardware sample-rate
converter [11] implements a similar concept to the
Smith-Gosset design, but with higher-order
interpolation of the table lookups to keep the table size
down. Efficiency comparison with the design presented
in this paper is difficult, as this paper presents a method
intended for software implementation, whereas the
AD1896 implementation can make use of parallel
computation if necessary.

Russell and Beckmann [7] present an innovative IIR-
based technique which computes IIR filter coefficients
recursively on the fly and can thus be very efficient.
However, being an IIR technique, it cannot implement
linear phase designs, and is not easily compared with
the approach used in this paper.

A different approach to the basic problem is presented
in [8] and enhanced in a series of papers, notably [9]. In
this case, the h(t) filtering and the interpolation are
transposed, such that instead of implementing an

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 4 of 15

interpolation between a number of oversampled samples
(or sub-sample-delay filters), the coefficients of the
interpolation itself are filters. In this situation, the
design of the interpolators and the filters are combined
into a single design (which may have useful
implications from a design optimization standpoint),
and the time-variation is limited to a single parameter,
leaving the filters to be time-invariant. This technique
is still being developed, however, and it appears that
most of the development has been done with low-order
filters, and a method for designing the filters in terms of
h(t) is only recently shown [10], such that it is not yet
clear how designs based on this method compare to
designs following the above tracks, either from an
efficiency standpoint or from a distortion performance
standpoint.

Finally, almost all existing techniques either do not or
cannot separate the variation in the time-varying filter’s
design from the running of the filter. As such, most
methods end up having to replicate large portions of the
algorithm (if not the whole algorithm) across channels
when converting multi-channel signals (where all the
channels are sampled synchronously). The method
being presented here was designed with an emphasis on
factoring out as much of the channel-independent
processing as possible, in order to minimize the amount
of processing that must be replicated on a per-channel
basis.

3. THEORY OF OPERATION

Converting between sampling-rates is equivalent to
interpolating between sample values in a discrete-time
signal. Consider a bandlimited continuous-time signal
x(t) that has been sampled at a rate FSin to generate a
discrete-time signal









=

inF
nxnx][.

This is shown in Figure 1. Here we are using the
notation used in [7], where discrete-time signals are
denoted with square brackets (x[n] and y[m]), and
continuous-time with parentheses (x(t) and y(t)).
Assume that FSin is high enough to avoid aliasing and
loss of information. The circles represent the sample
values x[n] and the solid line represents x(t).
Converting to a different output sampling-rate is

equivalent to calculating other values of the underlying
continuous time function x(t).

Discrete-time samples x[n] Underlying
continuous-time
signal x(t)

Figure 1 Sampling-rate conversion is equivalent to
resampling the underlying continuous-time signal.

Let y[m] represent the resampled output signal at rate
FSout. y[m] is related to x(t) via the equation:









=

outF
mxmy][

The key quantity in sampling-rate conversion is the ratio
FSout/FSin and thus without loss of generality we can
assume that FSin = 1 Hz.

3.1. Core Algorithm

The sampling-rate converter described in this document
is based on cubic polynomial interpolation but extends
to arbitrary order polynomial interpolation. For ease of
presentation (and notation), this paper assumes that
cubic interpolation is used. However, the technique
applies to other order polynomials in a straightforward
fashion.

We begin with a precomputed set of M interpolation
filters that calculate output values spaced every 1/M
samples. These interpolation filters are FIR and are
conceptually equivalent to fractional sample delay
filters. For now, assume that such a set of filters exists;
Section 4 describes how these filters are generated.
With these M filters, the input signal values can be
calculated exactly at all of the X’s shown in Figure 2.

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 5 of 15

Original sample values x[n]

Values that can be accurately
calculated using M=8 fractional
interpolation filters

output
sample
time

outT

Figure 2. The input signal can be calculated between
samples at exactly M=8 locations using a set of
precomputed interpolation filters.

Suppose that we wish to calculate an output value at the
time indicated by the vertical dashed line in Figure 2.
Denote this time by Tout. Since Tout does not fall exactly
on an X, we must estimate the value based on
neighboring samples. We first calculate the output
signal at the 4 nearest X values (shown in bold) using
the precomputed interpolation filters. Two X values lies
to the left and two X values lie to the right of Tout.
Then, we fit a 3rd order polynomial ()tP through these 4
values and evaluate ()tP at Tout as shown below.

Calculated
output sample

Cubic
Polynomial

outT

Figure 3. Close up of the interpolation operation around
Tout.

The overall process for 1 sample value is then
summarized as:

1. Calculate the 4 nearest X values: 2 to the left,
and 2 to the right of the desired output time.

2. Fit a cubic polynomial ()tP to these 4 values.

3. Evaluate this polynomial at the desired output
time Tout.

Next, separate Tout into an integer and fractional
portion1:

outout tNT +=

where

()
NTt
TfloorN

outout

out

−=
=

.

Based on this decomposition, 10 <≤ outt . The set of
interpolating filters to use depends solely on outt ;
N only introduces a whole sample delay and specifies
which set of input samples to use in the calculation. Let

][nhk denote the interpolation filter that calculates the
output at time Mk / , with 1,...,1,0 −= Mk . The 4
nearest sample values shown in Figure 3 would be
calculated using the filters][nhk ,][1 nhk+ ,][2 nhk+ , and

][3 nhk+ where

2)*(−= Mtfloork out .

Examining this equation, we see that k falls in the range
32 −≤≤− Mk . Furthermore, once k is calculated, we

need a total of 4 filters: k , 1+k , 2+k , and 3+k . The
total set of filters required is thus: Mk ,...,1,0,1,2 −−= .
This set contains 3+M filters, not just the original M .
We can simplify this set slightly by changing the
previous equation to

)*(Mtfloork out= .

The only effect of this change is to introduce an
additional latency of M/2 samples through the system.
With this change, the set of filters required
is 2,...,1,0 += Mk . Note that the last 3 filters in this set
are whole sample delays of the first 3 filters and are
related by:

1 This separation into integer and fractional portions is possible
because we assumed that the input sampling-rate Tin equals 1 Hz.

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 6 of 15

]1[][
]1[][
]1[][

22

11

0

−=
−=
−=

+

+

nhnh
nhnh
nhnh

M

M

M

.

The interpolating filters calculate the output at times







 +

M
M

MM
2,...,2,1,0 . Let L denote the length of

these filters. These filters extend before and after the
desired output time, and are thus non-causal. By
introducing some latency into the processing we can
make the overall system causal. We will apply the filter
starting at time N and extending for L samples. The 4
“X” values are calculated as:

][][

][][

][][

][][

1

0
3

1

0
2

1

0
1

1

0

iNxihd

iNxihc

iNxihb

iNxiha

L

i
k

L

i
k

L

i
k

L

i
k

+=

+=

+=

+=

∑

∑

∑

∑

−

=
+

−

=
+

−

=
+

−

=

.

Now further decompose outt into an “integer” and
fractional portion, where the integer portion relates to
the M/1 sample spacing.

ttTt Mout +=

where

()

Mout

outM

Tttt
M
kMtfloor

M
T

−=

==
1

.

Note that tt is in the range
M

tt 10 <≤ . Now scale tt to

obtain the quantity ct which lies in the range 10 <≤ ct ,

ttMtc = .

ct represents the fractional position between the
precomputed interpolation values (the X’s in Figure 3).

3.2. Efficient Polynomial Interpolation

Using these definitions, we can redraw Figure 3 as:

0 1 2-1
ct

a b c d

Let ()tP represent the polynomial used for
interpolation. The output][my equals ()tP evaluated at

ctt = . Since the four values a , b , c , and d are used
to define ()tP , ()tP will be a 3rd order polynomial. Let
()tP be written as:

() 01
2

2
3

3 ctctctctP +++= .

Traditionally, polynomial interpolation is performed
using a two step procedure. First the polynomial
coefficients { }3210 ,,, cccc are calculated using the four
values { }dcba ,,, . This requires solving 4 simultaneous
linear equations. Next, this polynomial is evaluated at
the desired output time ct . These steps will be
examined in more detail below.

The four simultaneous equations to solve are:

()
()

()
() 0123

0123

0

0123

2482
1
0
1

ccccdP
cccccP

cbP
ccccaP

+++==+
+++==+

==
+−+−==−

.

Rewriting this using matrix notation yields



















=



































 −−

d
c
b
a

c
c
c
c

3

2

1

0

8421
1111
0001
1111

and the desired coefficients { }3210 ,,, cccc can be
computed by inverting the 4x4 matrix:

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 7 of 15





































−−
−

−−−
=



















d
c
b
a

c
c
c
c

1331
0363
1632

0060

6
1

3

2

1

0

.

The desired output][my can then be calculated with
these coefficients as:

[] () []


















==

3

2

1

0

32 1

c
c
c
c

ttttPmy cccc .

Expanding this we find

()

()

()

b

tdcba

tcba

tdcbamy

c

c

c

+

−+−−+

+−+

+−+−=

632
6
1

363
6
1

33
6
1][

2

3

.

The first key insight made during the development of
this sampling-rate conversion algorithm was to note that
the output ()ctP can be rearranged as a linear weighted
sum of the values a , b , c , and d in which the
weighting coefficients depend solely on ct :

dwcwbwawmy dcba +++=][

where

ccd

cccc

cccb

ccca

ttw

tttw

tttw

tttw

6
1

6
1

2
1

2
1

1
2
1

2
1

3
1

2
1

6
1

3

23

23

23

−=

++−=

+−−+=

−+−=

. (1)

These weighting functions are plotted in Figure 4.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t
c

In
te

rp
ol

at
io

n
C

oe
ffi

ci
en

t

w
a

w
b

w
c

w
d

Figure 4. Weighting coefficients plotting over the
interval from 0 to 1.

3.3. Interpolating Filter Coefficients

The second key insight made was that instead of
computing a weighted some of filter outputs, we can
apply the same weighting to the filter coefficients
themselves and thereby derive a single time-varying
filter. Substituting in the definitions for a , b , c , and
d into []my above yields:

∑

∑

∑

∑

∑

∑

=

=

−

= ++

+

−

=
+

−

=
+

−

=
+

−

=

+=

+







++

+
=









++









++









++









+=

1

0

1

0 32

1

1

0
3

1

0
2

1

0
1

1

0

][][

][
][][

][][

][][

][][

][][

][][][

L

i
net

L

i kdkc

kbka

L

i
kd

L

i
kc

L

i
kb

L

i
ka

iNxih

iNx
ihwihw

ihwihw

iNxihw

iNxihw

iNxihw

iNxihwmy

where

[] [] [] [] []ihwihwihwihwih kdkckbkanet 321 +++ +++= .

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 8 of 15

This rearrangement of computation does not yield a
benefit when a single channel is processed, but allows
multiple synchronous channels to be computed
efficiently as described in the next section.

3.4. Efficient Multi-Channel Operation

When multiple channels, all sampled at the same sample
times, are involved, the filter][ihnet will be the same for
each channel. Thus,][ihnet can be computed once and
then applied to each channel in turn. The incremental
computation required to process subsequent channels is
equivalent to that required by a simple FIR filter.

We now summarize the overall algorithm. For each
output time sample perform the following steps once:

1. Keep track of the fractional time offset ct
using the input and output sampling-rates.

2. Calculate the weighting coefficients aw , bw ,

cw , and dw shown in Equation (1).

3. Calculate][ihnet as a weighted sum of FIR
filters.

Then per channel

4. Apply][ihnet separately to each input channel
to calculate one sample of each output channel.

4. GENERATING COEFFICIENT SETS

The operation of the sampling-rate converter relies upon
a set of fractional delay filters. This section describes
one possible method of generating these filters based on
a polyphase decomposition. The section first describes
constraints on the design problem and then presents the
polyphase decomposition.

4.1. Design Constraints

The design starts with specifications on the magnitude
response of the fractional sample delay filters. These
filters operate at the input sampling-rate and provide
two functions in addition to the fractional sample delay:

• They filter out the phase discontinuity at
2/inFS

• Eliminate frequencies above 2/outFS if

inout FSFS <

Let passR and stopR denote the desired passband ripple
and stopband attenuation. The ideal design constraints
when inout FSFS < are shown in Figure 5. The ideal
design constraints when inout FSFS > are shown in
Figure 6.

2/outFS

0.1

passR−0.1

Normalized Input
Frequency

Gain

stopR

2/inFS

Figure 5 Ideal design constraints on the magnitude of
the fractional sample filters when inout FSFS < . These
constraints cannot be achieved because the transition
region is zero width.

0.1

passR−0.1

Normalized Input
Frequency

Gain

stopR

2/inFS

Figure 6 Ideal design constraints on the magnitude of
the fractional sample filters when inout FSFS > . These
constraints cannot be achieved because the transition
region is zero width.

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 9 of 15

In practice, an additional constraint must be placed on
the width of the transition region, defined as the
frequency interval between the end of the filter’s
passband and the start of its stopband. The length of an
FIR filter (and hence its implementation cost) is in
general inversely proportional to the width of its
transition region. The ideal design constraints in Figure
5 and Figure 6 have transition bands of zero width and
realizable filters meeting these constraints therefore
cannot be designed. Instead, the design constraints must
be relaxed by the incorporation of a transition region of
width transW . This is illustrated in Figure 7 and Figure
8.

0.1

passR−0.1

Normalized Input
Frequency

Gain

stopR

transW

passF 2/outstop FSF = 2/inFS

Figure 7. Realistic design constraints when
inout FSFS < .

0.1

passR−0.1

Normalized Input
Frequency

Gain

stopR

transW

passF 2/instop FSF =

Figure 8 Realistic design constraints when
inout FSFS > .

As a result of this transition region, the high frequency
components of the input signal will be attenuated, and
this leads to one of the fundamental design tradeoffs:
longer filter lengths, and more computation/memory,
which preserve the high frequency components of the

input signal, versus shorter/cheaper filter lengths which
attenuate high frequencies somewhat.

4.2. Polyphase Decomposition

The design constraints shown above are on the
magnitude response of the fractional sample delay
filters. Let passF and stopF denote the normalized
passband and stopband frequencies of these filters. All
M+3 filters can be designed jointly using a polyphase
decomposition as follows. First, design a high order
prototype filter][nhproto with passband and stopband
frequencies of MFpass / and MFstop / meeting the
ripple constraints from before. Let protoL denote the
length of this prototype filter. Decompose the prototype
filter in M polyphase components.

])1[(][nMkMhnh protok +−−= ,

for 1,...,1,0 −= Mk , and 1,...,1,0 −= Ln

where)/(ceil MLL proto=′ . These components will be
referred to as “subfilters” because they are derived from
a single longer filter. Note that because of the ceil()
operation, some samples in the above equation may
exceed the length of][nhproto ; set these to zero. The
final 3 subfilters are simply copies of the first 3
subfilters with an additional sample of delay added:

]1[][−= − nhnh Mkk , for 2,1, ++= MMMk

0]0[=kh

These subfilters have a length of 1+′L samples. To
simplify the implementation, zero pad the first M
subfilters to length 1+′L so that all M+3 subfilters have
the same final length. To be consistent with our
previous notation, we will use 1+′= LL .

A reasonable question to ask is “Why store 3 additional
subfilters when a set of M would suffice?” This brings
up a tradeoff between efficiency of computation and
memory usage. This algorithm can be implemented by
storing only M subfilters and computing the additional 3
on the fly. However, this complicates the control logic
and consumes additional MIPS at run-time. In our DSP
implementation we have chosen computational

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 10 of 15

efficiency over memory efficiency and store all M+3
subfilters.

4.3. Design Example

This section provides an example of fractional delay
filters designed using the polyphase decomposition.
The example assumes that inFS =48 kHz, outFS =44.1
kHz, M =16, 175.0=transW and that the prototype filters
has 90 dB of stopband attenuation and 0.25 dB ripple.

The magnitude response of the prototype filter is shown
in Figure 9. It clearly shows the lowpass characteristic
and the specified stopband attenuation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−140

−120

−100

−80

−60

−40

−20

0
Prototype filter

Normalized frequency

dB

Figure 9 Magnitude response of the prototype filter.

The polyphase decomposition yields a total of 16
subfilters and 3 additional components are added by
simple integer delay. Figure 10 shows the group delay
of the 19 subfilters. The underlying latency is 17.5
samples and the kth subfilter has Mk / additional
samples of delay.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

17.4

17.6

17.8

18

18.2

18.4

18.6

18.8

19
Group delay of each component

Normalized frequency

de
la

y
(s

am
pl

es
)

Figure 10. Group delay of the subfilters.

Lastly, Figure 11 shows the magnitude response of each
subfilter. It shows the overall shape and then the
passband and stopband details separately. Each
response is lowpass, has roughly 90 dB of stopband
attenuation and +/- 0.25 dB of ripple. The subfilters
have also been scaled to have a peak gain of 0 dB.

0 0.5 1 1.5 2

x 10
4

−80

−60

−40

−20

0

20
Magnitude response of interpolating filters

Normalized frequency

G
ai

n
(d

B
)

0 0.5 1 1.5 2

x 10
4

−0.6

−0.4

−0.2

0

0.2
Passband detail. Extends to 17850 Hz

Normalized frequency

G
ai

n
(d

B
)

0 0.5 1 1.5 2

x 10
4

−200

−150

−100

−50
Stopband detail. Starts at 22050 Hz

Normalized frequency

G
ai

n
(d

B
)

Figure 11 Magnitude response of each of the subfilters.
From top to bottom, we see the overall response,
passband detail, and stopband detail.

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 11 of 15

5. PERFORMANCE LIMITS

The performance of the sampling-rate converter
algorithm is determined by 5 design parameters:

1. The length L of the subfilters (or equivalently,
the length of the prototype lowpass filter).

2. The technique (Parks-McClellan, Kaiser, etc.)
used to design the prototype lowpass filter.

3. Allowable passband and stopband ripple in the
prototype lowpass filter.

4. The number of subfilters M.

5. The order of the polynomial interpolation.

The effects of the first three design parameters are well-
known from classical FIR filter design techniques [1]
[2] and will not be covered here. The last two items are
particular to our algorithm and are examined in more
detail below.

5.1. Quantifying Performance

The performance of a sampling-rate conversion
algorithm can be quantified by MIPS and memory usage
and also by its audio performance. The latter refers to
the noise and distortion introduced by the processing.
An analytical analysis is difficult to do given the
complexity of the algorithm. Instead, the algorithm was
implemented in MATLAB and then stimulated with a
variety of test signals. Each test signal was a pure sine
wave and if the sampling-rate converter was operating
ideally, the output would also be a pure sine wave. We
applied a notch filter at the output to eliminate the
sinusoidal component and then measured: (1) the total
amount of energy remaining (equal to the total harmonic
distortion plus noise, THD) and (2) the worst case peak
distortion. Since the THD always includes the peak
distortion, THD will always be greater than or equal to
the peak distortion.

5.2. Interpolation Method and Number of
Subfilters

If we look at measurements of THD versus input sine
frequency (Figures 12 and 13), we see that the
performance is dominated by the stopband attenuation

of the prototype filter design at low input frequencies.
However, for high input frequencies, the THD starts
rising above the prototype filter’s stopband specs. This
rise in THD turns out to be due to a set of sidebands
around the test sine peak, which get higher in amplitude
as the sine frequency increases. [The spacing of these
sidebands was found to be equal to the “subfilter
crossing rate”, i.e. the rate at which the interpolation
fraction crossed over subfilter boundaries, and therefore
the rate at which the interpolation “crosses through” the
range of the interpolation fraction. As one may expect,
the interpolated FIR filter can be suboptimal according
to the accuracy of the interpolation (and the
interpolatibility of the prototype filter), and the
shortcomings of non-ideal interpolation tend to be
largest at high frequencies. Therefore, as the system
passes through various amounts of interpolation, the
actual implemented filters’ frequency responses vary
slightly, causing a small amplitude and/or phase
modulation of the test signal. This modulation will be
more pronounced for high signal frequencies, as that is
where the variation in the frequency responses due to
non-ideal interpolation will be greatest.

The total amount of this modulation can be affected in
(at least) three ways: (1) the “smoothness” of the
subfilter designs, (2) the type of interpolation, and (3)
the number of subfilters. First, one should to design the
subfilters so that adjacent subfilter coefficients are as
close as possible, to reduce any unnecessary variation in
the interpolation of the coefficients. We addressed this
by designing the subfilters as a polyphase
decomposition of a single lowpass FIR prototype filter.
Given that the prototype is designed as a lowpass filter,
its coefficients will tend to form a “smooth” shape,
which will result in adjacent subfilters being well-suited
to interpolation.

Second, a more accurate coefficient interpolation will
have less interpolation error (assuming a smooth filter
design), and hence less modulation. See Figure 12 and
note that the slope of the modulation-based distortion
increases by approximately 6 dB/oct between 1st-order
(12 dB/oct), 2nd-order (18 dB/oct), and 3rd-order (24
dB/oct) polynomial interpolations, thus shrinking the
range of frequencies which are noticeably affected by
the modulation distortion up against the top of the
frequency band.

Third, as the number of subfilters increases, the range of
the sub-sample fraction parameter is “more densely

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 12 of 15

sampled”, leading to adjacent subfilters which are more
similar to each other (again, as long as the filter design
is smooth), and hence reducing the amount of error that
can occur in the interpolation between them. See Figure
13, and note that the modulation-based distortion
dropped by 18 dB for each doubling of the number of
subfilters. In this particular simulation, quadratic
coefficient interpolation was used, which has a slope of
18dB/oct for its distortion, and so doubling the number
of subfilters gave the same amount of distortion as when
operating on a signal with half the frequency. This
makes intuitive sense, since the input sine would be
sampled at a similarly increased density in both cases.

As noted elsewhere, one of the benefits of this particular
design is that by computing the interpolation weights
only once per sample, one can often afford a more
expensive interpolation than a method which might
compute the weights every tap, and therefore allow a
much smaller prototype filter and hence a smaller data
set.

10
2

10
3

10
4

−170

−160

−150

−140

−130

−120

−110

−100

−90

−80

input frequency (Hz)

T
H

D
 a

nd
 w

or
st

 d
is

to
rt

io
n

pe
ak

 (
dB

)

linear

quadratic

cubic

worst distortion peak

THD

Figure 12. Interpolation error artifacts -- THD and
worst-case aliasing peak amplitude vs. input sine-wave
frequency for linear, quadratic, and cubic coefficient
interpolation. The example is for 48 kHz to 44.1 kHz
conversion, M=32, and a prototype filter with stopband
attenuation of -160 dB.

10
2

10
3

10
4

−170

−160

−150

−140

−130

−120

−110

−100

−90

−80

input frequency (Hz)

T
H

D
 a

nd
 w

or
st

 d
is

to
rt

io
n

pe
ak

 (
dB

)

THD

worst distortion peak

M=16

M=32
M=64

Figure 13. Interpolation error artifacts --- THD and
worst-case aliasing peak amplitude vs. input sine-wave
frequency for M=16, 32, and 64 subfilters. The
example is for 48 kHz to 44.1 kHz conversion,
quadratic coefficient interpolation, and a prototype filter
with stopband attenuation of -160 dB.

5.3. Instantaneous Conversion Ratio Variation
from Ideal Designed Ratio

As discussed elsewhere, this method treats the
instantaneous (or actual) sampling-rate ratio separately
from an ideal ratio, which is used to design the filters. It
is assumed that the actual ratio will be “close” to the
ideal ratio, and this is an important approximation used
in the simplification of the design (see discussion in
Section 2.3 on how this method relates to the Smith-
Gosset method). As such, one expects the design to not
be “exact” when the actual ratio differs from the
designed ratio. But how is it not exact, and how does it
affect the THD performance of the system?

As seen from the derivation of the subfilters, adjacent
coefficients in each of the subfilters represent a
sampling of the ideal prototype filter with a particular
step size, which is appropriate for the ideal conversion
ratio. Variations in the ideal ratio would correspond to
variations in the step size for the sampling of the ideal
filter. The effect of a variation in the step size can
conversely be viewed as though the step size were held
constant and the ideal filter was effectively expanded or
contracted along the coefficient/time axis, which
corresponds to a contraction or expansion of the filter
frequency response along the frequency axis.

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 13 of 15

When the instantaneous conversion ratio is different
from the ideal conversion ratio, the filters are designed
for a different step size than the instantaneous ratio
would imply, and hence implement a filter with either
an expanded or contracted frequency response from that
which would be best for the instantaneous ratio.
Therefore, the effects of ratio variation would tend to be
a breaking of the filter design specs, either by cutting
off at too low a frequency or, cutting off too high and
increasing the amplitude of aliasing artifacts. However,
since contraction/expansion of the response will be
proportional to the variation in the ratio from ideal, and
since the filter responses will be smooth, whatever
undesirable effects result from the variation will appear
in proportion to the amount of variation, and will come
in smoothly (i.e. they will gradually get worse rather
than “popping in”).

Therefore, the amount of ratio variation that can be
tolerated can be analyzed and the prototype filter
“overdesigned” by a sufficient amount, according to the
amount of contraction/expansion of the prototype filter
response that can be tolerated before design specs are
significantly broken.

5.4. Spectral Effects of Sampling-rate
Servoing

Asynchronous sampling-rate converters tend to be used
in conjunction with FIFO buffers as “jitter buffers”, to
interface independent sample-processing systems
together, with the possibility of (large or small-scale)
variation in their relative time bases, along with a
possible basic sample-rate difference. Such systems
tend to implement some sort of servoing of the
conversion ratio to absorb short-term variations, as well
as handling long-term drifts. As such, the actual
conversion ratio may not be a constant. Unfortunately,
this variation (no matter how small) acts as a slight
frequency modulation on the signal being converted,
which can show up as additional sidebands in the output
spectrum and adversely affect performance
measurements such as THD (especially when designing
an sampling-rate converters to have THDs down in the
–120 to –160 dB range). This modulation is purely an
effect of the servoing rather than of the underlying
algorithm (and would show up regardless of the
underlying method). As such, sampling-rate converter
performance measurements tend to be made with any
servoing disabled or removed.

6. PRODUCTIZATION

A commercial implementation of the sampling-rate
conversion algorithm was created for the Analog
Devices SHARC and Blackfin processor families. On
the SHARC, the algorithm was implemented using 32-
bit floating-point arithmetic and took advantage of the
SIMD capabilities of the SHARC processor whenever
possible. The Blackfin, on the other hand, is a native
16-bit processor that also has SIMD capabilities. Audio
data and subfilter coefficients are stored as 32-bit
fractional values and arithmetic was implemented using
double precision (32-bit)2. The library utilizes cubic
interpolation but flexibly supports different numbers of
interpolation filters M, and different subfilter lengths L.

The overall sampling-rate converter “product” consists
of optimized DSP code and a set of precomputed
coefficient sets for typical audio conversion ratios. The
coefficient sets support converting between the rates
{32 kHz, 44.1 kHz, and 48 kHz}. One coefficient set
supports a specified conversion ratio (e.g., 48 kHz to
44.1 kHz), and is valid for a small range of frequencies
around this operating point. Coefficient sets are
switched when major changes in the sampling-rates
occur (e.g, originally operating at 48 kHz to 44.1 kHz,
and then switching to 32 kHz to 44.1 kHz).

The product also contains a set of MATLAB design
functions for computing additional coefficient sets.
This allows the user to support non-standard conversion
ratios or to meet specific audio performance metrics.

6.1. Key API Functions

The implementation contains a jitter buffer to deal with
small variations in the input and output sampling-rates
and to allow the control algorithm to react without over-
or underflowing the available data. The library is
designed to be used in a multi-threaded environment
and has two primary processing functions.
ASRC_WriteInput() accepts a block of multi-channel
audio data and copies it into the state buffer of the
sampling-rate converter. No other processing is
performed. Next, the function ASRC_ReadOutput() is
called, typically from a separate thread. This function
performs the actual sampling-rate conversion and writes
the converted data into an output buffer. It also

2 To be precise, multiplications on the Blackfin were implemented
with only 31-bits of precision because this reduced computation by
33% in the inner loop over a full precision 32x32 32 multiplication.

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 14 of 15

removes samples from the internal state buffer once
they have been processed. Processing continues in this
manner; input samples are written into the state buffer;
then the samples in the state buffer are consumed as
output samples are requested.

Each call to ASRC_ReadOutput() specifies the number
of output samples to calculate and also ratiof , the ratio
of input to output sampling-rates. ratiof can be adjusted
from call-to-call, and in this manner the system can be
adapted to time-varying sampling-rates. The audio
system must also implement a control system, which
tracks the input and output sampling-rates and
calculates ratiof . This control system is highly
implementation dependent and is outside the scope of
this paper.

6.2. MIPS and Memory Usage

This section provides examples of the performance of
the sampling-rate conversion algorithm under typical
operating conditions. The examples assume that the
prototype filters are designed with 130 dB of stopband
attenuation and 0.025 dB of passband ripple.

Figure 14. Table of filter coefficient parameters for a
variety of standard audio sampling rates.

Figure 14 shows typical coefficient sets and is
applicable to both the SHARC and Blackfin. The
columns should be interpreted as follows:

• M – number of subfilters.

• L – length of each subfilter.

• C – number of 32-bit memory words used to
store coefficients for all of the subfilters (equal
to LM)3(+).

• Edge of passband – the highest frequency that
can be passed through the sampling-rate
converter algorithm without attenuation.

• THD+N – total amount of noise in the output
(dB).

• Peak spur – peak distortion in the output (dB).

The data memory is dominated by the coefficient
table(s) and the internal state buffer. The coefficient
table sizes correspond to column “C” in Figure 14. The
state buffer size is a function of several parameters. Let

inB and outB represent the maximum input and output
block sizes and let jitterSize equal the number of
additional samples to be used as a jitter buffer. Also let
nChannels denote the number of channels processed.
Then, the total length of the state buffer is:

()()jitterSizeBBLnChannels outin ++× ,max

in 32-bit words.

On the SHARC, code side totals 1,144 words of 48-bit
program memory and on the Blackfin 1,980 bytes.
Several of the functions provided are for reading and
writing data in a variety of formats and not all functions
are typically used in a single application.

The MIPS consumed is a function of the input and
output block sizes and the number of channels
processed. In general, larger blocks yield more efficient
implementations, and in this analysis we assume that

32== outin BB samples.

Figure 15 and Figure 16 show the MIPS consumed by
the algorithm on the SHARC and Blackfin processors,
respectively. Note that there is a large computational
cost incurred for the first channel, but that each
subsequent channel increases computation by only
about 20%. This is the key benefit of our approach, and
yields great efficiency when multiple channels are
processed. For example. Converting 6 channels from 48
kHz to 44.1 kHz requires 19.9 MIPS on the SHARC and
67.1 MIPS on the Blackfin.

FS in FS out M L C

End of
passband

(Hz)
THD+N

(dB)

Peak
spur
(dB)

32000 32000 32 66 2,310 13,440 -116.5 -125.9
44100 32000 32 66 2,310 12,472 -117.4 -129.6
48000 32000 32 70 2,450 12,400 -115.6 -123.8
32000 44100 32 66 2,310 13,440 -118.0 -130.1
44100 44100 32 66 2,310 18,522 -116.5 -125.9
48000 44100 32 62 2,170 17,970 -116.4 -126.9
32000 48000 32 66 2,310 13,440 -117.7 -129.1
44100 48000 32 66 2,310 18,522 -117.8 -130.5
48000 48000 32 66 2,310 20,160 -116.5 -125.9

Beckmann et. al.

Multi-Channel Sampling-rate Converter

AES 119th Convention, New York, New York, 2005 October 7–10
Page 15 of 15

FS in FS out 1 2 3 4 5 6
32000 32000 7.6 9.1 10.6 12.2 13.7 15.3
44100 32000 7.6 9.1 10.6 12.2 13.7 15.3
48000 32000 7.9 9.5 11.1 12.7 14.3 15.9
32000 44100 10.4 12.5 14.5 16.6 18.7 20.7
44100 44100 10.4 12.5 14.5 16.6 18.7 20.7
48000 44100 9.9 11.9 13.9 15.9 17.9 19.9
32000 48000 11.3 13.5 15.8 18.0 20.3 22.5
44100 48000 11.3 13.5 15.8 18.0 20.3 22.5
48000 48000 11.3 13.5 15.8 18.0 20.3 22.5

Number of channels

Figure 15. Table of MIPS consumed on the SHARC
processor for a variety of standard input and output
sample ranges.

FS in FS out 1 2 3 4 5 6
32000 32000 28.4 33.0 37.6 42.2 46.9 51.5
44100 32000 28.4 33.0 37.6 42.2 46.9 51.5
48000 32000 30.0 34.9 39.8 44.7 49.6 54.5
32000 44100 39.1 45.5 51.9 58.2 64.6 71.0
44100 44100 39.1 45.5 51.9 58.2 64.6 71.0
48000 44100 37.0 43.0 49.1 55.1 61.1 67.1
32000 48000 42.6 49.5 56.4 63.4 70.3 77.2
44100 48000 42.6 49.5 56.4 63.4 70.3 77.2
48000 48000 42.6 49.5 56.4 63.4 70.3 77.2

Number of channels

Figure 16 Table of MIPS consumed on the Blackfin
processor for a variety of standard input and output
sample ranges.

7. CONCLUSION

The sampling-rate conversion algorithm described in
this paper provides a computationally efficient method
of performing asynchronous conversion in software on a
modern digital signal processor. The algorithm
combines fractional sample delay filters with cubic
polynomial interpolation. The key innovation is that a
large part of the computation is shared among channels
and thus yields a low incremental cost for converting
additional channels; roughly 20% per additional
channel. The algorithm has been productized by
Analog Devices and is available for both SHARC and
Blackfin processors. The performance of the algorithm
has been demonstrated through simulation and is
currently used in several commercial products.

8. ACKNOWLEDGEMENTS

This work was supported by Analog Devices, Inc. and
was performed at the Audio Rendering Technology

Center in San Jose as part of the VisualAudio
development effort. Special thanks to David Jaffe who
was instrumental in helping refine the details of the
algorithm’s APIs.

9. REFERENCES

[1] Oppenheim, A. V., and Schafer, R. W, “Discrete-time
Signal Processing”, Prentice Hall, Englewood Cliffs,
New Jersey, 1989.

[2] Parks, T. W., and Burrus, C. S., “Digital Filter Design”,
John Wiley and Son, New York, NY, 1987.

[3] T.A Ramstad “Digital Methods for Conversion Between
Arbitrary Sampling Frequencies”. IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-32,
No. 3, June 1984

[4] J. O. Smith and P. Gosset: “A Flexible Sampling-Rate
Conversion Method” ICASSP-84, Volume II, pp. 19.4.1-
19.4.2. New York, IEEE Press.

[5] J. O. Smith “Digital Audio Resampling Page,” www-
ccrma.stanford.edu/~jos/resample/

[6] Crochiere and Rabiner. Multirate Digital Signal
Processing, Englewood Cliffs, NJ; Prentice-Hall, Inc.,
1983.

[7] A. I. Russell and P. E. Beckmann “Efficient Arbitray
Sampling-rate Conversion With Recursive Calculation of
Coefficients”. IEEE Transactions on Acoustics, Speech,
and Signal Processing, Vol. 50, No. 4, April 2002

[8] C. W. Farrow “A Continuously Variable Digital Delay
Element”. Proc. 1988 IEEE In. Symp. Circuits Syst.
(Espoo, Finland), pp. 2641-2645, June 1988.

[9] J. Vesma and T. Saramäki “Design and Properties of
Polynomial-Based Fractional Delay Filters” ISCAS 2000
- IEEE Int. Symp.on Circuits and Systems, , Geneva
Switzerland, pp. I-104 – 107. May 2000.

[10] J. Vesma “A Frequency-Domain Approach to
Polynomial-Based Interpolation and the Farrow
Structure” IEE Transaction on Circuits and Systems – II:
Analog and Digital Signal Processing, Vol. 47, No. 3,
March 2000

[11] Analog Devices, Data Sheet for AD1896, 192 kHz Stereo
Asynchronous Sampling-rate Converter.

