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ABSTRACT 

We describe an asynchronous sampling-rate conversion (SRC) algorithm that is specifically tailored to multi-
channel audio applications.  The algorithm is capable of converting between arbitrary asynchronous sampling-rates 
around a fixed operating point, and is designed to operate in multi-threaded systems.  The algorithm uses a set of 
fractional delay filters together with cubic interpolation to achieve accurate and efficient sampling-rate conversion. 

 

1. INTRODUCTION 

Sampling-rate conversion is the process of converting a 
discrete-time signal x[n] sampled at a rate FSin to 
another signal y[m] sampled at a rate FSout.  If the ratio 
FSout/FSin is a constant then synchronous sampling-rate 
conversion may be used.  If the ratio FSout/FSin is only 
approximately known at design time, irrational, or 
slowly varying over time, then asynchronous sampling-
rate conversion is required.  Asynchronous conversion 
is a generalization of synchronous conversion, and 
asynchronous conversion may be used in synchronous 
applications, though there may be a computational or 
memory penalty. 

Synchronous sampling-rate conversion occurs when 
there is a single master clock in the system.  For 
example, a portable audio player that accepts content at 
a variety of sampling-rates FSin ={32 kHz, 44.1 kHz, 48 
kHz} and must convert to a fixed output rate of FSout = 
48 kHz.  Asynchronous conversion occurs when there 
are two or more separate clocks in the system.  For 
example, multiple digital sources – each with its own 
sampling-rate – that must be jointly processed. 

Audio applications requiring sampling-rate conversion 
were once restricted to high-end mixing consoles and 
post-production systems.  However, with the advent of 
streaming audio, networked audio players, and 
compressed audio, sampling-rate conversion is being 
incorporated into a variety of consumer products.  

 



Beckmann et. al.  
 

Multi-Channel Sampling-rate Converter

 

AES 119th Convention, New York, New York, 2005 October 7–10 
Page 2 of 15 

Furthermore, converting all audio content to a single 
sampling-rate for subsequent equalization and effects 
processing may simplify the design of products such as 
home theater systems that must handle content in a 
variety of sampling-rates. 

Sampling-rate conversion can be done in either 
hardware or software.  Hardware implementations may 
be standalone IC’s such as the Analog Devices AD1896 
or peripherals integrated into audio specific digital 
signal processors, such as the Analog Devices ADSP-
21364.  Alternatively, software implementations are 
attractive when the audio system already contains a 
digital signal processor with spare resources or if the 
sampling-rate conversion occurs between two software 
modules such as an audio decoder and effects 
processing. 

This paper details a software implementation of a 
sampling-rate conversion algorithm which is 
particularly efficient at converting multiple audio 
channels.  The algorithm combines fractional sample 
delay filters with cubic polynomial interpolation.  
Although conceptually similar to existing methods, the 
manner in which the calculations are partitioned is novel 
and provides the computational efficiency. 

The design of the algorithm is based upon the following 
assumptions: 

1. The clocks are asynchronous, but the 
instantaneous ratio stays within a small range 
during a run.  The system will be designed for 
an “ideal” ratio within that range, but will be  
allowed to stray small distances from the ideal 
ratio. 

2. Linear phase. 
3. Will operate on multi-channel signals, where 

all the channels share the same sample times. 

The paper is organized as follows.  Section 2 presents 
background information and compares our approach to 
existing sampling-rate conversion algorithms.  Section 3 
describes the core algorithm which combines fractional 
sample delay filters and polynomial interpolation.  
Section 4 discusses generating a set of fractional delay 
filters using a polyphase decomposition.  These filters 
provide the necessary delay, and when applicable, 
lowpass filtering.  The theoretical performance limits of 
the algorithm are covered in Section 5. Section 6 then 
discusses an actual implementation on a commercial 
audio processor and presents MIPS and memory usage 

for typical applications.  Finally, Section 7 summarizes 
the key innovations and benefits of the algorithm. 

2. BACKGROUND 

The subject of sampling-rate conversion, or 
alternatively, bandlimited interpolation, has been 
studied extensively, with just a portion of the work 
being presented in [6], [3], [4], [7], and [8]. The 
problem is usually attacked with what is called in [6] the 
“analog interpretation” of sampling-rate conversion: 

 

D/A A/D

inFS outFS

H(S)
[ ]nx [ ]my( )tx ( )ty

 

The signal is converted to continuous-time at a rate FSin, 
filtered by some filter H(s), which combines the 
reconstruction filter of the D/A converter with the anti-
aliasing filter of the A/D converter, and then sampled at 
a sampling-rate FSout to give the output y[m].  The 
design challenge is to implement a discrete-time 
simulation of this process both accurately and 
efficiently. 

It turns out [4] [7] that this design ends up, theoretically, 
as the implementation of a time-varying discrete-time 
filter, whose time-varying kernel is h(n – mTin), and 
which is evaluated at a sampling period of Tout (where 
Tin = 1/FSin, and Tout = 1/FSout).  In other words, the 
ideal time varying filter has a kernel consisting of 
samples of the ideal continuous-time filter, spaced 
according to the sampling-rates, and offset according to 
the instantaneous “phase” of the converter.  The major 
differences between most techniques tend to be in the 
ways that they implement the time-varying filter and/or 
how they update the filter coefficients in order to be as 
efficient as possible. 

2.1. Synchronous vs. Asynchronous 

Some techniques restrict the input and output sampling-
rate to a strict ratio, such that although the input and 
output are different sampling-rates, their ratio stays 
absolutely constant.  These techniques are called 
“synchronous”.  They tend to make use of this 
restriction by noting that the time-varying filter will thus 
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become predictable, and in the case of rational ratios, it 
will assume only a finite set of configurations.  Often 
these are precomputed and stored in order to remove the 
need to compute the time-varying filter settings at 
runtime (trading off storage space for reduced 
computation). 

Many uses of sample-rate converters, however, do not 
satisfy the synchronous assumption, so another class of 
“asynchronous” sample-rate converter methods exist for 
these situations.  In these cases, the sampling-rate ratio 
is assumed to be unknown at design time, probably 
irrational, and probably time-varying.  Therefore, the 
configurations of the time-varying filter cannot be 
completely predicted or precomputed, and some amount 
of online computation of the filter settings must be 
done.   Asynchronous methods implement various 
simplifications and/or approximations to make this 
online computation as cheap as possible.  

2.2. FIR vs. IIR  

The ideal filter H(s) is not inherently either FIR or IIR, 
being a continuous-time idealization, but the discrete-
time design must implement one or the other.  IIR filters 
have the advantage of being able to implement designs 
with sharp features with much less computation than the 
equivalent FIR filter, but with the drawback of not being 
able to implement linear-phase designs (a system 
whereby all frequencies are delayed the same amount 
when passing through the system), being at best only 
able to approximate them. High-end audio systems tend 
to require linear-phase designs, so FIR-based techniques 
tend to dominate that field, at the cost of more 
expensive methods, both in computational cost and in 
storage cost. 

2.3. Comparison with Other Techniques 

Crochiere and Rabiner [6] present a good background 
for the sampling-rate conversion problem, and describe 
the “classical” rational-ratio design of implementing the 
ratio L/M as an upsampling by a factor of L followed by 
appropriate filtering, followed by a downsampling by a 
factor of M.  This method tends to be useful for small 
values of L and M, otherwise the intermediate 
sampling-rate tends to get unwieldy.  It is, however, 
often used as the starting point for other design 
derivations. 

Ramstad [3] presents several methods, both FIR and 
IIR, including one that will be very close to the method 
derived in this paper.  It first presents a straightforward 
implementation of the h(n – mTin) filter, where a rational 
ratio is assumed, and thus the coefficients of the runtime 
filter are simply a periodic visiting of elements of a 
precomputed array containing the required samples of 
h(t).  While in essence a synchronous technique, it can 
be extended to asynchronous usage, at the penalty of 
needing a very large array to reduce artifacts due to not 
interpolating the coefficients.   Further variations 
include implementing an integer-ratio upsampler 
followed by a low-order polynomial interpolator.  The 
design presented in this paper will end up quite close to 
this design, but with some further optimizations. 

Smith and Gosset [4] presents a design for h(t) based on 
the windowed sinc function, and an asynchronous 
conversion method which computes runtime FIR 
coefficients for the variable filter via linear interpolation 
from a precomputed table.  The method is designed to 
be used for a very wide range of conversion ratios with 
a single table, which requires that the FIR coefficient 
generation handle a particularly general case.  The 
design presented in this paper is closely related to the 
Smith-Gosset method (though it is derived more like the 
Ramstad method), but the derivation will make some 
simplifying and/or restricting assumptions that allow the 
resulting algorithm to be implemented more efficiently.  

The Analog Devices AD1896 hardware sample-rate 
converter [11] implements a similar concept to the 
Smith-Gosset design, but with higher-order 
interpolation of the table lookups to keep the table size 
down.  Efficiency comparison with the design presented 
in this paper is difficult, as this paper presents a method 
intended for software implementation, whereas the 
AD1896 implementation can make use of parallel 
computation if necessary. 

Russell and Beckmann [7] present an innovative IIR-
based technique which computes IIR filter coefficients 
recursively on the fly and can thus be very efficient.  
However, being an IIR technique, it cannot implement 
linear phase designs, and is not easily compared with 
the approach used in this paper. 

A different approach to the basic problem is presented 
in [8] and enhanced in a series of papers, notably [9].  In 
this case, the h(t) filtering and the interpolation are 
transposed, such that instead of implementing an 
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interpolation between a number of oversampled samples 
(or sub-sample-delay filters), the coefficients of the 
interpolation itself are filters.  In this situation, the 
design of the interpolators and the filters are combined 
into a single design (which may have useful 
implications from a design optimization standpoint), 
and the time-variation is limited to a single parameter, 
leaving the filters to be time-invariant.  This technique 
is still being developed, however, and it appears that 
most of the development has been done with low-order 
filters, and a method for designing the filters in terms of 
h(t) is only recently shown [10], such that it is not yet 
clear how designs based on this method compare to 
designs following the above tracks, either from an 
efficiency standpoint or from a distortion performance 
standpoint. 

Finally, almost all existing techniques either do not or 
cannot separate the variation in the time-varying filter’s 
design from the running of the filter.  As such, most 
methods end up having to replicate large portions of the 
algorithm (if not the whole algorithm) across channels 
when converting multi-channel signals (where all the 
channels are sampled synchronously).  The method 
being presented here was designed with an emphasis on 
factoring out as much of the channel-independent 
processing as possible, in order to minimize the amount 
of processing that must be replicated on a per-channel 
basis. 

3. THEORY OF OPERATION 

Converting between sampling-rates is equivalent to 
interpolating between sample values in a discrete-time 
signal.  Consider a bandlimited continuous-time signal 
x(t) that has been sampled at a rate FSin to generate a 
discrete-time signal 









=

inF
nxnx ][ . 

This is shown in Figure 1.  Here we are using the 
notation used in [7], where discrete-time signals are 
denoted with square brackets (x[n] and y[m]), and 
continuous-time with parentheses (x(t) and y(t)).  
Assume that FSin is high enough to avoid aliasing and 
loss of information.  The circles represent the sample 
values x[n] and the solid line represents x(t).  
Converting to a different output sampling-rate is 

equivalent to calculating other values of the underlying 
continuous time function x(t). 

Discrete-time samples x[n] Underlying
continuous-time
signal x(t)

Figure 1 Sampling-rate conversion is equivalent to 
resampling the underlying continuous-time signal. 

Let y[m] represent the resampled output signal at rate 
FSout.  y[m] is related to x(t) via the equation: 









=

outF
mxmy ][  

The key quantity in sampling-rate conversion is the ratio 
FSout/FSin and thus without loss of generality we can 
assume that FSin = 1 Hz. 

3.1. Core Algorithm 

The sampling-rate converter described in this document 
is based on cubic polynomial interpolation but extends 
to arbitrary order polynomial interpolation.  For ease of 
presentation (and notation), this paper assumes that 
cubic interpolation is used. However, the technique 
applies to other order polynomials in a straightforward 
fashion. 

We begin with a precomputed set of M interpolation 
filters that calculate output values spaced every 1/M 
samples.  These interpolation filters are FIR and are 
conceptually equivalent to fractional sample delay 
filters.  For now, assume that such a set of filters exists; 
Section 4 describes how these filters are generated.  
With these M filters, the input signal values can be 
calculated exactly at all of the X’s shown in Figure 2. 
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Original sample values x[n]

Values that can be accurately
calculated using M=8 fractional
interpolation filters

output
sample
time

outT  

Figure 2.  The input signal can be calculated between 
samples at exactly M=8 locations using a set of 
precomputed interpolation filters. 

Suppose that we wish to calculate an output value at the 
time indicated by the vertical dashed line in Figure 2.  
Denote this time by Tout.  Since Tout does not fall exactly 
on an X, we must estimate the value based on 
neighboring samples.  We first calculate the output 
signal at the 4 nearest X values (shown in bold) using 
the precomputed interpolation filters.  Two X values lies 
to the left and two X values lie to the right of Tout.  
Then, we fit a 3rd order polynomial ( )tP  through these 4 
values and evaluate ( )tP  at Tout as shown below. 

Calculated
output sample

Cubic
Polynomial

outT
 

Figure 3.  Close up of the interpolation operation around 
Tout. 

The overall process for 1 sample value is then 
summarized as: 

1. Calculate the 4 nearest X values:  2 to the left, 
and 2 to the right of the desired output time. 

2. Fit a cubic polynomial ( )tP  to these 4 values. 

3. Evaluate this polynomial at the desired output 
time Tout. 

Next, separate Tout into an integer and fractional 
portion1: 

outout tNT +=  

where 

( )
NTt
TfloorN

outout

out

−=
=

. 

Based on this decomposition, 10 <≤ outt .  The set of 
interpolating filters to use depends solely on outt  ; 
N only introduces a whole sample delay and specifies 
which set of input samples to use in the calculation.  Let 

][nhk  denote the interpolation filter that calculates the 
output at time Mk / , with 1,...,1,0 −= Mk .  The 4 
nearest sample values shown in Figure 3 would be 
calculated using the filters ][nhk , ][1 nhk+ , ][2 nhk+ , and 

][3 nhk+  where 

2)*( −= Mtfloork out . 

Examining this equation, we see that k falls in the range 
32 −≤≤− Mk .  Furthermore, once k  is calculated, we 

need a total of 4 filters: k , 1+k , 2+k , and 3+k . The 
total set of filters required is thus:  Mk ,...,1,0,1,2 −−= . 
This set contains 3+M filters, not just the original M .  
We can simplify this set slightly by changing the 
previous equation to 

)*( Mtfloork out= . 

The only effect of this change is to introduce an 
additional latency of M/2 samples through the system.  
With this change, the set of filters required 
is 2,...,1,0 += Mk .  Note that the last 3 filters in this set 
are whole sample delays of the first 3 filters and are 
related by: 

                                                           
1 This separation into integer and fractional portions is possible 
because we assumed that the input sampling-rate Tin  equals 1 Hz. 
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The interpolating filters calculate the output at times 


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


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 +

M
M

MM
2,...,2,1,0 .  Let L  denote the length of 

these filters.  These filters extend before and after the 
desired output time, and are thus non-causal.  By 
introducing some latency into the processing we can 
make the overall system causal.  We will apply the filter 
starting at time N  and extending for L  samples.  The 4 
“X” values are calculated as: 
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Now further decompose outt  into an “integer” and 
fractional portion, where the integer portion relates to 
the M/1 sample spacing. 

ttTt Mout +=  

where 

( )

Mout

outM

Tttt
M
kMtfloor

M
T

−=

==
1

. 

Note that tt is in the range 
M

tt 10 <≤ .  Now scale tt to 

obtain the quantity ct  which lies in the range 10 <≤ ct , 

ttMtc  = . 

ct represents the fractional position between the 
precomputed interpolation values (the X’s in Figure 3). 

3.2. Efficient Polynomial Interpolation 

Using these definitions, we can redraw Figure 3 as: 

0 1 2-1
ct

a b c d

 

Let ( )tP  represent the polynomial used for 
interpolation.  The output ][my  equals ( )tP  evaluated at 

ctt = .  Since the four values a , b , c , and d  are used 
to define ( )tP , ( )tP  will be a 3rd order polynomial. Let 
( )tP  be written as: 

( ) 01
2

2
3

3 ctctctctP +++= . 

Traditionally, polynomial interpolation is performed 
using a two step procedure.  First the polynomial 
coefficients { }3210 ,,, cccc  are calculated using the four 
values { }dcba ,,, .  This requires solving 4 simultaneous 
linear equations.  Next, this polynomial is evaluated at 
the desired output time ct .  These steps will be 
examined in more detail below. 

The four simultaneous equations to solve are: 

( )
( )

( )
( ) 0123

0123

0

0123

2482
1
0
1

ccccdP
cccccP

cbP
ccccaP

+++==+
+++==+

==
+−+−==−

. 

Rewriting this using matrix notation yields 
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=
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
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d
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a

c
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c

3

2

1
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and the desired coefficients { }3210 ,,, cccc  can be 
computed by inverting the 4x4 matrix: 



Beckmann et. al.  
 

Multi-Channel Sampling-rate Converter

 

AES 119th Convention, New York, New York, 2005 October 7–10 
Page 7 of 15 





































−−
−

−−−
=



















d
c
b
a

c
c
c
c

1331
0363
1632

0060

6
1

3

2

1

0

. 

The desired output ][my  can then be calculated with 
these coefficients as: 

[ ] ( ) [ ]


















==

3

2

1

0

32  1

c
c
c
c

ttttPmy cccc . 

Expanding this we find  
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The first key insight made during the development of 
this sampling-rate conversion algorithm was to note that 
the output ( )ctP  can be rearranged as a linear weighted 
sum of the values a , b , c , and d in which the 
weighting coefficients depend solely on ct : 

dwcwbwawmy dcba +++=][  
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These weighting functions are plotted in Figure 4. 
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Figure 4.  Weighting coefficients plotting over the 
interval from 0 to 1. 

3.3. Interpolating Filter Coefficients 

The second key insight made was that instead of 
computing a weighted some of filter outputs, we can 
apply the same weighting to the filter coefficients 
themselves and thereby derive a single time-varying 
filter.  Substituting in the definitions for a , b , c , and 
d into [ ]my  above yields: 
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where 

[ ] [ ] [ ] [ ] [ ]ihwihwihwihwih kdkckbkanet 321 +++ +++= . 
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This rearrangement of computation does not yield a 
benefit when a single channel is processed, but allows 
multiple synchronous channels to be computed 
efficiently as described in the next section. 

3.4. Efficient Multi-Channel Operation 

When multiple channels, all sampled at the same sample 
times, are involved, the filter ][ihnet  will be the same for 
each channel.  Thus, ][ihnet  can be computed once and 
then applied to each channel in turn.  The incremental 
computation required to process subsequent channels is 
equivalent to that required by a simple FIR filter. 

We now summarize the overall algorithm.  For each 
output time sample perform the following steps once: 

1. Keep track of the fractional time offset ct  
using the input and output sampling-rates. 

2. Calculate the weighting coefficients aw , bw , 

cw , and dw shown in Equation (1). 

3. Calculate ][ihnet  as a weighted sum of FIR 
filters. 

Then per channel 

4. Apply ][ihnet  separately to each input channel 
to calculate one sample of each output channel. 

4. GENERATING COEFFICIENT SETS 

The operation of the sampling-rate converter relies upon 
a set of fractional delay filters.  This section describes 
one possible method of generating these filters based on 
a polyphase decomposition.  The section first describes 
constraints on the design problem and then presents the 
polyphase decomposition.   

4.1. Design Constraints 

The design starts with specifications on the magnitude 
response of the fractional sample delay filters.  These 
filters operate at the input sampling-rate and provide 
two functions in addition to the fractional sample delay: 

• They filter out the phase discontinuity at 
2/inFS  

• Eliminate frequencies above 2/outFS  if 

inout FSFS <  

Let passR and stopR denote the desired passband ripple 
and stopband attenuation.  The ideal design constraints 
when inout FSFS < are shown in Figure 5. The ideal 
design constraints when inout FSFS >  are shown in 
Figure 6. 
 

2/outFS

0.1

passR−0.1

Normalized Input
Frequency

Gain

stopR

2/inFS

 

Figure 5 Ideal design constraints on the magnitude of 
the fractional sample filters when inout FSFS < .  These 
constraints cannot be achieved because the transition 
region is zero width. 

0.1

passR−0.1

Normalized Input
Frequency

Gain

stopR

2/inFS

 

Figure 6 Ideal design constraints on the magnitude of 
the fractional sample filters when inout FSFS > . These 
constraints cannot be achieved because the transition 
region is zero width. 
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In practice, an additional constraint must be placed on 
the width of the transition region, defined as the 
frequency interval between the end of the filter’s 
passband and the start of its stopband.  The length of an 
FIR filter (and hence its implementation cost) is in 
general inversely proportional to the width of its 
transition region.  The ideal design constraints in Figure 
5 and Figure 6 have transition bands of zero width and 
realizable filters meeting these constraints therefore 
cannot be designed.  Instead, the design constraints must 
be relaxed by the incorporation of a transition region of 
width transW .  This is illustrated in Figure 7 and Figure 
8. 

0.1

passR−0.1

Normalized Input
Frequency

Gain

stopR

transW

passF 2/outstop FSF = 2/inFS

 

Figure 7.  Realistic design constraints when 
inout FSFS < . 

0.1

passR−0.1

Normalized Input
Frequency

Gain

stopR

transW

passF 2/instop FSF =

 

Figure 8 Realistic design constraints when 
inout FSFS > . 

As a result of this transition region, the high frequency 
components of the input signal will be attenuated, and 
this leads to one of the fundamental design tradeoffs:  
longer filter lengths, and more computation/memory, 
which preserve the high frequency components of the 

input signal, versus shorter/cheaper filter lengths which 
attenuate high frequencies somewhat. 

4.2. Polyphase Decomposition 

The design constraints shown above are on the 
magnitude response of the fractional sample delay 
filters.  Let passF  and stopF denote the normalized 
passband and stopband frequencies of these filters.  All 
M+3 filters can be designed jointly using a polyphase 
decomposition as follows.  First, design a high order 
prototype filter ][nhproto  with passband and stopband 
frequencies of MFpass /  and MFstop / meeting the 
ripple constraints from before.  Let protoL  denote the 
length of this prototype filter.  Decompose the prototype 
filter in M polyphase components.   

])1[(][ nMkMhnh protok +−−= , 

for 1,...,1,0 −= Mk , and 1,...,1,0 −= Ln  

where )/(ceil MLL proto=′ .  These components will be 
referred to as “subfilters” because they are derived from 
a single longer filter.  Note that because of the ceil() 
operation, some samples in the above equation may 
exceed the length of ][nhproto ;  set these to zero.  The 
final 3 subfilters are simply copies of the first 3 
subfilters with an additional sample of delay added: 

]1[][ −= − nhnh Mkk , for 2,1, ++= MMMk  

0]0[ =kh  

These subfilters have a length of 1+′L  samples.  To 
simplify the implementation, zero pad the first M 
subfilters to length 1+′L  so that all M+3 subfilters have 
the same final length.  To be consistent with our 
previous notation, we will use 1+′= LL . 

A reasonable question to ask is “Why store 3 additional 
subfilters when a set of M would suffice?”  This brings 
up a tradeoff between efficiency of computation and 
memory usage.  This algorithm can be implemented by 
storing only M subfilters and computing the additional 3 
on the fly.  However, this complicates the control logic 
and consumes additional MIPS at run-time.  In our DSP 
implementation we have chosen computational 
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efficiency over memory efficiency and store all M+3 
subfilters. 

4.3. Design Example 

This section provides an example of fractional delay 
filters designed using the polyphase decomposition.  
The example assumes that inFS =48 kHz, outFS =44.1 
kHz, M =16, 175.0=transW and that the prototype filters 
has 90 dB of stopband attenuation and 0.25 dB ripple. 

The magnitude response of the prototype filter is shown 
in Figure 9.  It clearly shows the lowpass characteristic 
and the specified stopband attenuation. 
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Figure 9  Magnitude response of the prototype filter. 

The polyphase decomposition yields a total of 16 
subfilters and 3 additional components are added by 
simple integer delay.  Figure 10 shows the group delay 
of the 19 subfilters.  The underlying latency is 17.5 
samples and the kth subfilter has Mk /  additional 
samples of delay. 
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Figure 10.  Group delay of the subfilters. 

Lastly, Figure 11 shows the magnitude response of each 
subfilter.  It shows the overall shape and then the 
passband and stopband details separately.  Each 
response is lowpass, has roughly 90 dB of stopband 
attenuation and +/- 0.25 dB of ripple.  The subfilters 
have also been scaled to have a peak gain of 0 dB. 
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Figure 11  Magnitude response of each of the subfilters.  
From top to bottom, we see the overall response, 
passband detail, and stopband detail. 
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5. PERFORMANCE LIMITS 

The performance of the sampling-rate converter 
algorithm is determined by 5 design parameters: 

1. The length L of the subfilters (or equivalently, 
the length of the prototype lowpass filter). 

2. The technique (Parks-McClellan, Kaiser, etc.) 
used to design the prototype lowpass filter. 

3. Allowable passband and stopband ripple in the 
prototype lowpass filter. 

4. The number of subfilters M. 

5. The order of the polynomial interpolation. 

The effects of the first three design parameters are well-
known from classical FIR filter design techniques [1]  
[2] and will not be covered here.  The last two items are 
particular to our algorithm and are examined in more 
detail below. 

5.1. Quantifying Performance 

The performance of a sampling-rate conversion 
algorithm can be quantified by MIPS and memory usage 
and also by its audio performance.  The latter refers to 
the noise and distortion introduced by the processing.  
An analytical analysis is difficult to do given the 
complexity of the algorithm.  Instead, the algorithm was 
implemented in MATLAB and then stimulated with a 
variety of test signals.  Each test signal was a pure sine 
wave and if the sampling-rate converter was operating 
ideally, the output would also be a pure sine wave.  We 
applied a notch filter at the output to eliminate the 
sinusoidal component and then measured:  (1) the total 
amount of energy remaining (equal to the total harmonic 
distortion plus noise, THD) and (2) the worst case peak 
distortion.  Since the THD always includes the peak 
distortion, THD will always be greater than or equal to 
the peak distortion. 

5.2. Interpolation Method and Number of 
Subfilters 

If we look at measurements of THD versus input sine 
frequency (Figures 12 and 13), we see that the 
performance is dominated by the stopband attenuation 

of the prototype filter design at low input frequencies.  
However, for high input frequencies, the THD starts 
rising above the prototype filter’s stopband specs.  This 
rise in THD turns out to be due to a set of sidebands 
around the test sine peak, which get higher in amplitude 
as the sine frequency increases. [The spacing of these 
sidebands was found to be equal to the “subfilter 
crossing rate”, i.e. the rate at which the interpolation 
fraction crossed over subfilter boundaries, and therefore 
the rate at which the interpolation “crosses through” the 
range of the interpolation fraction.  As one may expect, 
the interpolated FIR filter can be suboptimal according 
to the accuracy of the interpolation (and the 
interpolatibility of the prototype filter), and the 
shortcomings of non-ideal interpolation tend to be 
largest at high frequencies.  Therefore, as the system 
passes through various amounts of interpolation, the 
actual implemented filters’ frequency responses vary 
slightly, causing a small amplitude and/or phase 
modulation of the test signal.  This modulation will be 
more pronounced for high signal frequencies, as that is 
where the variation in the frequency responses due to 
non-ideal interpolation will be greatest. 

The total amount of this modulation can be affected in 
(at least) three ways: (1) the “smoothness” of the 
subfilter designs, (2) the type of interpolation, and (3) 
the number of subfilters.  First, one should to design the 
subfilters so that adjacent subfilter coefficients are as 
close as possible, to reduce any unnecessary variation in 
the interpolation of the coefficients.  We addressed this 
by designing the subfilters as a polyphase 
decomposition of a single lowpass FIR prototype filter. 
Given that the prototype is designed as a lowpass filter, 
its coefficients will tend to form a “smooth” shape, 
which will result in adjacent subfilters being well-suited 
to interpolation. 

Second, a more accurate coefficient interpolation will 
have less interpolation error (assuming a smooth filter 
design), and hence less modulation.  See Figure 12 and 
note that the slope of the modulation-based distortion 
increases by approximately 6 dB/oct between 1st-order 
(12 dB/oct), 2nd-order (18 dB/oct), and 3rd-order (24 
dB/oct) polynomial interpolations, thus shrinking the 
range of frequencies which are noticeably affected by 
the modulation distortion up against the top of the 
frequency band. 

Third, as the number of subfilters increases, the range of 
the sub-sample fraction parameter is “more densely 
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sampled”, leading to adjacent subfilters which are more 
similar to each other (again, as long as the filter design 
is smooth), and hence reducing the amount of error that 
can occur in the interpolation between them.  See Figure 
13, and note that the modulation-based distortion 
dropped by 18 dB for each doubling of the number of 
subfilters.  In this particular simulation, quadratic 
coefficient interpolation was used, which has a slope of 
18dB/oct for its distortion, and so doubling the number 
of subfilters gave the same amount of distortion as when 
operating on a signal with half the frequency.  This 
makes intuitive sense, since the input sine would be 
sampled at a similarly increased density in both cases. 

As noted elsewhere, one of the benefits of this particular 
design is that by computing the interpolation weights 
only once per sample, one can often afford a more 
expensive interpolation than a method which might 
compute the weights every tap, and therefore allow a 
much smaller prototype filter and hence a smaller data 
set. 
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Figure 12. Interpolation error artifacts -- THD and 
worst-case aliasing peak amplitude vs. input sine-wave 
frequency for linear, quadratic, and cubic coefficient 
interpolation.  The example is for 48 kHz to 44.1 kHz 
conversion, M=32, and a prototype filter with stopband 
attenuation of -160 dB. 
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Figure 13.  Interpolation error artifacts --- THD and 
worst-case aliasing peak amplitude vs. input sine-wave 
frequency for M=16, 32, and 64 subfilters.  The 
example is for 48 kHz to 44.1 kHz conversion, 
quadratic coefficient interpolation, and a prototype filter 
with stopband attenuation of -160 dB. 

5.3. Instantaneous Conversion Ratio Variation 
from Ideal Designed Ratio 

As discussed elsewhere, this method treats the 
instantaneous (or actual) sampling-rate ratio separately 
from an ideal ratio, which is used to design the filters.  It 
is assumed that the actual ratio will be “close” to the 
ideal ratio, and this is an important approximation used 
in the simplification of the design (see discussion in 
Section 2.3 on how this method relates to the Smith-
Gosset method).  As such, one expects the design to not 
be “exact” when the actual ratio differs from the 
designed ratio.  But how is it not exact, and how does it 
affect the THD performance of the system? 

As seen from the derivation of the subfilters, adjacent 
coefficients in each of the subfilters represent a 
sampling of the ideal prototype filter with a particular 
step size, which is appropriate for the ideal conversion 
ratio.  Variations in the ideal ratio would correspond to 
variations in the step size for the sampling of the ideal 
filter.  The effect of a variation in the step size can 
conversely be viewed as though the step size were held 
constant and the ideal filter was effectively expanded or 
contracted along the coefficient/time axis, which 
corresponds to a contraction or expansion of the filter 
frequency response along the frequency axis. 
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When the instantaneous conversion ratio is different 
from the ideal conversion ratio, the filters are designed 
for a different step size than the instantaneous ratio 
would imply, and hence implement a filter with either 
an expanded or contracted frequency response from that 
which would be best for the instantaneous ratio.  
Therefore, the effects of ratio variation would tend to be 
a breaking of the filter design specs, either by cutting 
off at too low a frequency or, cutting off too high and 
increasing the amplitude of aliasing artifacts.  However, 
since contraction/expansion of the response will be 
proportional to the variation in the ratio from ideal, and 
since the filter responses will be smooth, whatever 
undesirable effects result from the variation will appear 
in proportion to the amount of variation, and will come 
in smoothly (i.e. they will gradually get worse rather 
than “popping in”).   

Therefore, the amount of ratio variation that can be 
tolerated can be analyzed and the prototype filter 
“overdesigned” by a sufficient amount, according to the 
amount of contraction/expansion of the prototype filter 
response that can be tolerated before design specs are 
significantly broken. 

5.4. Spectral Effects of Sampling-rate 
Servoing 

Asynchronous sampling-rate converters tend to be used 
in conjunction with FIFO buffers as “jitter buffers”, to 
interface independent sample-processing systems 
together, with the possibility of (large or small-scale) 
variation in their relative time bases, along with a 
possible basic sample-rate difference.  Such systems 
tend to implement some sort of servoing of the 
conversion ratio to absorb short-term variations, as well 
as handling long-term drifts.  As such, the actual 
conversion ratio may not be a constant.  Unfortunately, 
this variation (no matter how small) acts as a slight 
frequency modulation on the signal being converted, 
which can show up as additional sidebands in the output 
spectrum and adversely affect performance 
measurements such as THD (especially when designing 
an sampling-rate converters to have THDs down in the 
–120 to –160 dB range).  This modulation is purely an 
effect of the servoing rather than of the underlying 
algorithm (and would show up regardless of the 
underlying method).  As such, sampling-rate converter 
performance measurements tend to be made with any 
servoing disabled or removed. 

6. PRODUCTIZATION 

A commercial implementation of the sampling-rate 
conversion algorithm was created for the Analog 
Devices SHARC and Blackfin processor families.  On 
the SHARC, the algorithm was implemented using 32-
bit floating-point arithmetic and took advantage of the 
SIMD capabilities of the SHARC processor whenever 
possible.  The Blackfin, on the other hand, is a native 
16-bit processor that also has SIMD capabilities.  Audio 
data and subfilter coefficients are stored as 32-bit 
fractional values and arithmetic was implemented using 
double precision (32-bit)2.  The library utilizes cubic 
interpolation but flexibly supports different numbers of 
interpolation filters M, and different subfilter lengths L. 

The overall sampling-rate converter “product” consists 
of optimized DSP code and a set of precomputed 
coefficient sets for typical audio conversion ratios.  The 
coefficient sets support converting between the rates 
{32 kHz, 44.1 kHz, and 48 kHz}.  One coefficient set 
supports a specified conversion ratio (e.g., 48 kHz to 
44.1 kHz), and is valid for a small range of frequencies 
around this operating point.  Coefficient sets are 
switched when major changes in the sampling-rates 
occur (e.g, originally operating at 48 kHz to 44.1 kHz, 
and then switching to 32 kHz to 44.1 kHz). 

The product also contains a set of MATLAB design 
functions for computing additional coefficient sets.  
This allows the user to support non-standard conversion 
ratios or to meet specific audio performance metrics. 

6.1. Key API Functions 

The implementation contains a jitter buffer to deal with 
small variations in the input and output sampling-rates 
and to allow the control algorithm to react without over- 
or underflowing the available data.  The library is 
designed to be used in a multi-threaded environment 
and has two primary processing functions. 
ASRC_WriteInput() accepts a block of multi-channel 
audio data and copies it into the state buffer of the 
sampling-rate converter.  No other processing is 
performed.  Next, the function ASRC_ReadOutput() is 
called, typically from a separate thread. This function 
performs the actual sampling-rate conversion and writes 
the converted data into an output buffer.  It also 

                                                           
2 To be precise, multiplications on the Blackfin were implemented 
with only 31-bits of precision because this reduced computation by 
33% in the inner loop over a full precision 32x32 32 multiplication. 
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removes samples from the internal state buffer once 
they have been processed. Processing continues in this 
manner; input samples are written into the state buffer; 
then the samples in the state buffer are consumed as 
output samples are requested. 

Each call to ASRC_ReadOutput() specifies the number 
of output samples to calculate and also ratiof , the ratio 
of input to output sampling-rates.  ratiof can be adjusted 
from call-to-call, and in this manner the system can be 
adapted to time-varying sampling-rates.  The audio 
system must also implement a control system, which 
tracks the input and output sampling-rates and 
calculates ratiof .  This control system is highly 
implementation dependent and is outside the scope of 
this paper. 

6.2. MIPS and Memory Usage 

This section provides examples of the performance of 
the sampling-rate conversion algorithm under typical 
operating conditions.  The examples assume that the 
prototype filters are designed with 130 dB of stopband 
attenuation and 0.025 dB of passband ripple. 

 

Figure 14. Table of filter coefficient parameters for a 
variety of standard audio sampling rates.  

Figure 14 shows typical coefficient sets and is 
applicable to both the SHARC and Blackfin.  The 
columns should be interpreted as follows: 

• M – number of subfilters. 

• L – length of each subfilter. 

• C – number of 32-bit memory words used to 
store coefficients for all of the subfilters (equal 
to LM )3( + ). 

• Edge of passband – the highest frequency that 
can be passed through the sampling-rate 
converter algorithm without attenuation. 

• THD+N – total amount of noise in the output 
(dB). 

• Peak spur – peak distortion in the output (dB). 

The data memory is dominated by the coefficient 
table(s) and the internal state buffer.  The coefficient 
table sizes correspond to column “C” in Figure 14. The 
state buffer size is a function of several parameters.  Let 

inB  and outB represent the maximum input and output 
block sizes and let jitterSize  equal the number of 
additional samples to be used as a jitter buffer.  Also let 
nChannels denote the number of channels processed.  
Then, the total length of the state buffer is: 

( )( )jitterSizeBBLnChannels outin ++× ,max  

in 32-bit words. 

On the SHARC, code side totals 1,144 words of 48-bit 
program memory and on the Blackfin 1,980 bytes. 
Several of the functions provided are for reading and 
writing data in a variety of formats and not all functions 
are typically used in a single application. 

The MIPS consumed is a function of the input and 
output block sizes and the number of channels 
processed.  In general, larger blocks yield more efficient 
implementations, and in this analysis we assume that 

32== outin BB  samples.   

Figure 15 and Figure 16 show the MIPS consumed by 
the algorithm on the SHARC and Blackfin processors, 
respectively.  Note that there is a large computational 
cost incurred for the first channel, but that each 
subsequent channel increases computation by only 
about 20%.  This is the key benefit of our approach, and 
yields great efficiency when multiple channels are 
processed.  For example. Converting 6 channels from 48 
kHz to 44.1 kHz requires 19.9 MIPS on the SHARC and 
67.1 MIPS on the Blackfin. 

FS in FS out M L C 

End of 
passband 

(Hz) 
THD+N 

(dB)

Peak 
spur 
(dB)

32000 32000 32 66 2,310 13,440 -116.5 -125.9
44100 32000 32 66 2,310 12,472 -117.4 -129.6
48000 32000 32 70 2,450 12,400 -115.6 -123.8
32000 44100 32 66 2,310 13,440 -118.0 -130.1
44100 44100 32 66 2,310 18,522 -116.5 -125.9
48000 44100 32 62 2,170 17,970 -116.4 -126.9
32000 48000 32 66 2,310 13,440 -117.7 -129.1
44100 48000 32 66 2,310 18,522 -117.8 -130.5
48000 48000 32 66 2,310 20,160 -116.5 -125.9
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FS in FS out 1 2 3 4 5 6
32000 32000 7.6 9.1 10.6 12.2 13.7 15.3
44100 32000 7.6 9.1 10.6 12.2 13.7 15.3
48000 32000 7.9 9.5 11.1 12.7 14.3 15.9
32000 44100 10.4 12.5 14.5 16.6 18.7 20.7
44100 44100 10.4 12.5 14.5 16.6 18.7 20.7
48000 44100 9.9 11.9 13.9 15.9 17.9 19.9
32000 48000 11.3 13.5 15.8 18.0 20.3 22.5
44100 48000 11.3 13.5 15.8 18.0 20.3 22.5
48000 48000 11.3 13.5 15.8 18.0 20.3 22.5

Number of channels

 

Figure 15.  Table of MIPS consumed on the SHARC 
processor for a variety of standard input and output 
sample ranges. 

FS in FS out 1 2 3 4 5 6
32000 32000 28.4 33.0 37.6 42.2 46.9 51.5
44100 32000 28.4 33.0 37.6 42.2 46.9 51.5
48000 32000 30.0 34.9 39.8 44.7 49.6 54.5
32000 44100 39.1 45.5 51.9 58.2 64.6 71.0
44100 44100 39.1 45.5 51.9 58.2 64.6 71.0
48000 44100 37.0 43.0 49.1 55.1 61.1 67.1
32000 48000 42.6 49.5 56.4 63.4 70.3 77.2
44100 48000 42.6 49.5 56.4 63.4 70.3 77.2
48000 48000 42.6 49.5 56.4 63.4 70.3 77.2

Number of channels

 

Figure 16 Table of MIPS consumed on the Blackfin 
processor for a variety of standard input and output 
sample ranges. 

7. CONCLUSION 

The sampling-rate conversion algorithm described in 
this paper provides a computationally efficient method 
of performing asynchronous conversion in software on a 
modern digital signal processor.  The algorithm 
combines fractional sample delay filters with cubic 
polynomial interpolation.  The key innovation is that a 
large part of the computation is shared among channels 
and thus yields a low incremental cost for converting 
additional channels; roughly 20% per additional 
channel.  The algorithm has been productized by 
Analog Devices and is available for both SHARC and 
Blackfin processors.  The performance of the algorithm 
has been demonstrated through simulation and is 
currently used in several commercial products. 
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