
Broadcom Corporation

Common Firmware Environment (CFE)

Functional Specification

ABSTRACT

This document describes a common firmware environment to be shared by all Broadcom MIPS64
processors and SOC designs. The goal is to provide a standard set of APIs and data structures for use
by bootstrap, diagnostics, and initialization code for operating systems.

Copyright © 2000, 2001, 2002, 2003, 2004 Broadcom Corporation, Irvine CA

Author: Mitch Lichtenberg
Document Version: 1.6
Edit Number: 256
Last Revised: 7/30/2004 11:02 PM

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation i

This page is supposed to be blank.
(of course, we’ve gone and put stuff on it, so it isn’t really blank now is it?)

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation ii

Table Of Contents

1. INTRODUCTION ...1

1.1 PROJECT DESCRIPTION ...1
1.2 LICENSE INFORMATION ..2
1.3 RELATED DOCUMENTS ...2
1.4 TRADEMARKS...2
1.5 REVISION HISTORY...3
1.6 NOTATION CONVENTIONS ..3

2. OVERVIEW...5

2.1 SUPPORTED PLATFORMS...5
2.2 INITIALIZATION ..5
2.3 EXECUTION MODEL..6
2.4 DEVICE DRIVERS..6
2.5 NETWORK SUPPORT ...7
2.6 SYSTEM BOOTSTRAP ..7
2.7 MEMORY MANAGEMENT..8
2.8 ENVIRONMENT ...8
2.9 FIRMWARE API ..8
2.10 VGA AND KEYBOARD SUPPORT..8
2.11 USB SUPPORT...9

3. USER INTERFACE ..10

3.1 COMMAND SYNTAX ...10
3.2 SPECIAL ENVIRONMENT VARIABLES ..10
3.3 COMMAND LINE EDITOR ...11
3.4 COMMAND DESCRIPTIONS..11

3.4.1 ARP ...12
3.4.1.1 Usage ...12
3.4.1.2 Description...12
3.4.1.3 Options...12
3.4.1.4 Example ...12

3.4.2 BOOT, LOAD ...13
3.4.2.1 Usage ...13
3.4.2.2 Description...13
3.4.2.3 Options...13
3.4.2.4 Example ...14

3.4.3 COPYDISK ...15
3.4.3.1 Usage ...15
3.4.3.2 Description...15
3.4.3.3 Options...15
3.4.3.4 Example ...15

3.4.4 CPU1 (test command)..16
3.4.4.1 Usage ...16
3.4.4.2 Description...16
3.4.4.3 Options...16
3.4.4.4 Example ...16

3.4.5 D (dump)..17
3.4.5.1 Usage ...17

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation iii

3.4.5.2 Description...17
3.4.5.3 Options...17
3.4.5.4 Example ...17

3.4.6 DEFEATURE..18
3.4.6.1 Usage ...18
3.4.6.2 Description...18
3.4.6.3 Options...18
3.4.6.4 Example ...18

3.4.7 E (edit) ...19
3.4.7.1 Usage ...19
3.4.7.2 Description...19
3.4.7.3 Options...19
3.4.7.4 Example ...19

3.4.8 F (fill)...20
3.4.8.1 Usage ...20
3.4.8.2 Description...20
3.4.8.3 Options...20
3.4.8.4 Example ...20

3.4.9 FLASH...21
3.4.9.1 Usage ...21
3.4.9.2 Description...21
3.4.9.3 Options...21
3.4.9.4 Example ...21

3.4.10 GO ...22
3.4.10.1 Usage ...22
3.4.10.2 Description...22
3.4.10.3 Options...22
3.4.10.4 Example ...22

3.4.11 HELP ...23
3.4.11.1 Usage ...23
3.4.11.2 Description...23
3.4.11.3 Options...23
3.4.11.4 Example ...23

3.4.12 IFCONFIG...24
3.4.12.1 Usage ...24
3.4.12.2 Description...24
3.4.12.3 Options...24
3.4.12.4 Example ...25

3.4.13 LOOP...26
3.4.13.1 Usage ...26
3.4.13.2 Description...26
3.4.13.3 Options...26
3.4.13.4 Example ...26

3.4.14 MAP PCI ...27
3.4.14.1 Usage ...27
3.4.14.2 Description...27
3.4.14.3 Options...27
3.4.14.4 Example ...27

3.4.15 MEMORYTEST..28
3.4.15.1 Usage ...28
3.4.15.2 Description...28
3.4.15.3 Options...28
3.4.15.4 Example ...28

3.4.16 MEMTEST ..29
3.4.16.1 Usage ...29
3.4.16.2 Description...29

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation iv

3.4.16.3 Options...29
3.4.16.4 Example ...29

3.4.17 PHY DUMP...30
3.4.17.1 Usage ...30
3.4.17.2 Description...30
3.4.17.3 Options...30
3.4.17.4 Example ...30

3.4.18 PHY SET ...31
3.4.18.1 Usage ...31
3.4.18.2 Description...31
3.4.18.3 Options...31
3.4.18.4 Example ...31

3.4.19 PING..32
3.4.19.1 Usage ...32
3.4.19.2 Description...32
3.4.19.3 Options...32
3.4.19.4 Example ...32

3.4.20 PRINTENV..33
3.4.20.1 Usage ...33
3.4.20.2 Description...33
3.4.20.3 Options...33
3.4.20.4 Example ...33

3.4.21 RESET...34
3.4.21.1 Usage ...34
3.4.21.2 Description...34
3.4.21.3 Options...34
3.4.21.4 Example ...34

3.4.22 SAVE...35
3.4.22.1 Usage ...35
3.4.22.2 Description...35
3.4.22.3 Options...35
3.4.22.4 Example ...35

3.4.23 SET CONSOLE...36
3.4.23.1 Usage ...36
3.4.23.2 Description...36
3.4.23.3 Options...36
3.4.23.4 Example ...36

3.4.24 SET DATE...37
3.4.24.1 Usage ...37
3.4.24.2 Description...37
3.4.24.3 Options...37
3.4.24.4 Example ...37

3.4.25 SET TIME ...38
3.4.25.1 Usage ...38
3.4.25.2 Description...38
3.4.25.3 Options...38
3.4.25.4 Example ...38

3.4.26 SETENV..39
3.4.26.1 Usage ...39
3.4.26.2 Description...39
3.4.26.3 Options...39
3.4.26.4 Example ...39

3.4.27 SHOW AGENTS...40
3.4.27.1 Usage ...40
3.4.27.2 Description...40
3.4.27.3 Options...40

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation v

3.4.27.4 Example ...40
3.4.28 SHOW BOOT..41

3.4.28.1 Usage ...41
3.4.28.2 Description...41
3.4.28.3 Options...41
3.4.28.4 Example ...41

3.4.29 SHOW DEFEATURE ...42
3.4.29.1 Usage ...42
3.4.29.2 Description...42
3.4.29.3 Options...42
3.4.29.4 Example ...42

3.4.30 SHOW DEVICES..43
3.4.30.1 Usage ...43
3.4.30.2 Description...43
3.4.30.3 Options...43
3.4.30.4 Example ...43

3.4.31 SHOW FLASH..44
3.4.31.1 Usage ...44
3.4.31.2 Description...44
3.4.31.3 Options...44
3.4.31.4 Example ...44

3.4.32 SHOW HEAP ..45
3.4.32.1 Usage ...45
3.4.32.2 Description...45
3.4.32.3 Options...45
3.4.32.4 Example ...45

3.4.33 SHOW MEMORY...46
3.4.33.1 Usage ...46
3.4.33.2 Description...46
3.4.33.3 Options...46
3.4.33.4 Example ...46

3.4.34 SHOW PCI ..47
3.4.34.1 Usage ...47
3.4.34.2 Description...47
3.4.34.3 Options...47
3.4.34.4 Example ...47

3.4.35 SHOW SOC...48
3.4.35.1 Usage ...48
3.4.35.2 Description...48
3.4.35.3 Options...48
3.4.35.4 Example ...49

3.4.36 SHOW SPD ...50
3.4.36.1 Usage ...50
3.4.36.2 Description...50
3.4.36.3 Options...50
3.4.36.4 Example ...50

3.4.37 SHOW TEMP..51
3.4.37.1 Usage ...51
3.4.37.2 Description...51
3.4.37.3 Options...51
3.4.37.4 Example ...51

3.4.38 SHOW TIME...52
3.4.38.1 Usage ...52
3.4.38.2 Description...52
3.4.38.3 Options...52
3.4.38.4 Example ...52

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation vi

3.4.39 U (unassemble) ..53
3.4.39.1 Usage ...53
3.4.39.2 Description...53
3.4.39.3 Options...53
3.4.39.4 Example ...53

3.4.40 UNSETENV ..54
3.4.40.1 Usage ...54
3.4.40.2 Description...54
3.4.40.3 Options...54
3.4.40.4 Example ...54

4. SOFTWARE INTERNALS ..55

4.1 MODULE OVERVIEW ..55
4.2 LIBRARY MODULES..55
4.3 SYSTEM STARTUP...56
4.4 MULTIPROCESSOR STARTUP ...57
4.5 “BI-ENDIAN” STARTUP...58
4.6 HEAP MANAGER...58
4.7 PHYSICAL MEMORY MANAGER..59
4.8 DEVICE MANAGER ...60
4.9 CONSOLE INTERFACE ...60
4.10 ENVIRONMENT MANAGER..61
4.11 TIMER MANAGER ...63
4.12 NETWORK SUBSYSTEM...63
4.13 FILE SYSTEMS ..64
4.14 PCI/LDT CONFIGURATION...65
4.15 USER INTERFACE..65

4.15.1 Adding a command..66
4.15.2 Calling the command function...67

5. THE BCM1250 REFERENCE DESIGNS...68

5.1 BOARD DESCRIPTION (SWARM) ...68
5.1.1 Features..68
5.1.2 Jumpers and Settings ...68
5.1.3 Firmware Devices ..70

5.2 ADDRESSES OF ONBOARD PERIPHERALS ...70
5.2.1 Generic Bus Assignments ..70
5.2.2 GPIO Signals ...70

5.3 BOARD DESCRIPTION (SENTOSA) ..71
5.3.1 Features..71
5.3.2 Jumpers and Settings ...71

5.4 BOARD DESCRIPTION (RHONE) ..72
5.4.1 Features..72
5.4.2 Jumpers and Settings ...73
5.4.3 Firmware Devices ..74
5.4.4 Addresses of onboard peripherals ..74
5.4.5 Generic Bus Assignments ..74
5.4.6 GPIO Signals ...74

5.5 LOADING CFE VIA A ROM EMULATOR..75
5.6 INSTALLING A NEW VERSION OF THE FIRMWARE INTO THE FLASH ..76

6. PORTING CFE TO A NEW DESIGN ..77

6.1 TOOLS REQUIRED FOR BUILDING CFE ..77
6.2 DIRECTORY STRUCTURE ...78

6.2.1 The build directory (build/)..78
6.2.2 The CFE source directory (cfe/) ..78

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation vii

6.2.3 Board, CPU, and Architecture directories ...79
6.3 MAKEFILE FLOW...80
6.4 EXAMPLE MAKEFILE ..81
6.5 SPECIAL SOURCE FILES ...81
6.6 CONFIGURATION OPTIONS ..82

6.6.1 Required Makefile macros...82
6.6.2 Options in the Makefile ...82
6.6.3 Options in the bsp_config.h file...84
6.6.4 Startup Routines...85
6.6.5 Special caveats for board_earlyinit ...86
6.6.6 Relocatable Code and Data..86

6.7 DRAM INITIALIZATION ON THE BCM1250..87
6.7.1 DRAM Initialization Table ..87

6.7.1.1 DRAM_GLOBALS(chintlv) ...89
6.7.1.2 DRAM_GLOBALS(chintlv) ...89
6.7.1.3 DRAM_CHAN_CFG(chan,tMEMCLK,dramtype,pagepolicy,blksize,csintlv,ecc,flg)...................89
6.7.1.4 DRAM_CHAN_CLKCFG(addrskew,dqoskew,dqiskew,addrdrive,datadrive,clkdrive)90
6.7.1.5 DRAM_CHAN_MANTIMING(tCK,rfsh,tval) ...91
6.7.1.6 DRAM_CS_SPD(csel,flags,chan,dev) ..91
6.7.1.7 DRAM_CS_GEOM(csel,rows,cols,banks)..92
6.7.1.8 DRAM_CS_TIMING(tCK,rfsh,caslatency,attributes,tRAS,tRP,tRRD,tRCD,tRFC,tRC)92

6.7.2 Sample draminit tables...93
6.7.2.1 SWARM board ..93
6.7.2.2 SENTOSA board ...93
6.7.2.3 Large Memory (external decode mode)...94

6.8 LED MESSAGES ..96

7. DEVICE DRIVERS...98

7.1 DEVICE DRIVER STRUCTURE...98
7.1.1 Device Descriptor ..98
7.1.2 Device Classes ...98
7.1.3 Function Dispatch..99
7.1.4 The Probe routine ..99

7.2 ADDING A NEW DEVICE DRIVER..100
7.3 DEVICE DRIVER PROBE ARGUMENTS FOR SUPPLIED DEVICES ..101
7.4 DEVICE DRIVER FUNCTIONS..101

7.4.1 The dev_open routine...102
7.4.2 The dev_read routine ...102
7.4.3 The dev_inpstat routine ...102
7.4.4 The dev_write routine ..103
7.4.5 The dev_ioctl routine ...103
7.4.6 The dev_close routine ..104
7.4.7 The dev_poll routine ..104
7.4.8 The dev_reset routine...104

7.5 STANDARD DEVICE IOCTLS AND READ/WRITE BEHAVIOR ...104
7.5.1 Ethernet Devices ..105

7.5.1.1 Read/Write behavior ..105
7.5.1.2 Standard IOCTLs...105

7.5.2 Flash Memory Devices ..105
7.5.2.1 Read/Write behavior ..105
7.5.2.2 Standard IOCTLs...106

7.5.3 EEPROM Devices ...106
7.5.3.1 Read/Write behavior ..106
7.5.3.2 Standard IOCTLs...106

7.5.4 Serial Devices ..107
7.5.4.1 Read/Write behavior ..107

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation viii

7.5.4.2 Standard IOCTLs...107
7.5.5 Disk Devices..107

7.5.5.1 Read/Write behavior ..107
7.5.5.2 Standard IOCTLs...107

8. FIRMWARE API AND BOOT ENVIRONMENT...109

8.1 ENTRY POINT..109
8.2 BOOT ENVIRONMENT ...110

8.2.1 Virtual Address Space ...110
8.2.2 Environment Variables ..110
8.2.3 Registers passed to boot loaders ..111
8.2.4 Registers passed to secondary processors..111
8.2.5 Memory Map ...112

8.3 DISK BOOTSTRAP ...113
8.3.1 Generating a Boot Block..114

8.4 API FUNCTIONS ..114
8.5 VENDOR EXTENSIONS ..115

8.5.1 CFE_CMD_FW_GETINFO..116
8.5.2 CFE_CMD_FW_RESTART ...117
8.5.3 CFE_CMD_FW_CPUCTL..118
8.5.4 CFE_CMD_FW_GETTIME ...120
8.5.5 CFE_CMD_FW_MEMENUM..121
8.5.6 CFE_CMD_FW_FLUSHCACHE...122
8.5.7 CFE_CMD_DEV_GETHANDLE...123
8.5.8 CFE_CMD_DEV_ENUM...124
8.5.9 CFE_CMD_DEV_OPEN ..125
8.5.10 CFE_CMD_DEV_INPSTAT ..126
8.5.11 CFE_CMD_DEV_READ..127
8.5.12 CFE_CMD_DEV_WRITE ..128
8.5.13 CFE_CMD_DEV_IOCTL ...129
8.5.14 CFE_CMD_DEV_CLOSE ..130
8.5.15 CFE_CMD_DEV_GETINFO..131
8.5.16 CFE_CMD_ENV_ENUM...132
8.5.17 CFE_CMD_ENV_GET...133
8.5.18 CFE_CMD_ENV_SET..134
8.5.19 CFE_CMD_ENV_DEL...135

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 1

1. Introduction

Note to customers: Please provide whatever feedback you can on CFE and this document.
Our goals are to make this software useful to most customers, particularly those working
on new designs that do not already have firmware to port. If you have comments, send
them to us at sibyte-public@broadcom.com. Read the file ‘TODO’ in the root directory of
the source tree for a list of the things we’re planning in the future, and ‘README’ for a
description of recent changes to CFE.

1.1 Project Description

The Broadcom Common Firmware Environment (CFE) is a collection of software modules for
initialization and bootstrap of designs incorporating Broadcom MIPS64™ processors. CFE can
be used early in the development of designs using Broadcom processors to do bringup, and later
be used to bootstrap the OS in a production environment.

CFE was designed with the following goals:

• It should be simple. Boot code isn’t supposed to be very fancy. It should be easy to bring up

and dependable. The “keep it simple” principle was applied liberally in the design of CFE.
• It should be easily portable to new designs incorporating Broadcom MIPS64 CPUs.
• It should support a variety of bootstrap devices, boot file systems, and console interfaces.
• It should be easy to add new device support
• It should be modular, and easy to remove unnecessary features
• It should serve as a collection of examples of simple device drivers for the integrated

peripherals on Broadcom processors.

Therefore, there are certain “non-goals” in CFE:

• It is not designed to be portable to non-MIPS platforms. However, it is not that difficult to

port to non-MIPS platforms either (most architecture-specific code and constants are in a
specific place, it is relatively easy to add new boards and architectures to the build tree).

• It is not designed to be compatible with IEEE 1275 (“Open Firmware”) or other established
firmware standards. Similarly, it is also not designed to become a firmware standard.

• It is not meant to be a hardware-abstraction layer or BIOS usable by the operating system for
normal device access.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 2

1.2 License Information

Copyright © 2000,2001,2002,2003,2004
Broadcom Corporation. All rights reserved.

This software is furnished under license and may be used and copied only in accordance with the
following terms and conditions. Subject to these conditions, you may download, copy, install,
use, modify and distribute modified or unmodified copies of this software in source and/or
binary form. No title or ownership is transferred hereby.

1) Any source code used, modified or distributed must reproduce and retain this copyright

notice and list of conditions as they appear in the source file.

2) No right is granted to use any trade name, trademark, or logo of Broadcom Corporation. The

"Broadcom Corporation" name may not be used to endorse or promote products derived from
this software without the prior written permission of Broadcom Corporation.

3) THIS SOFTWARE IS PROVIDED "AS-IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING BUT NOT LIMITED TO, ANY IMPLIEDWARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM BE
LIABLE FOR ANY DAMAGES WHATSOEVER, AND IN PARTICULAR, BROADCOM
SHALL NOT BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTEGOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; ORBUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE), EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

1.3 Related Documents

Readers of this specification may find the following documents useful:

• User Manual for the BCM1250, BCM1125H and BCM1125, Broadcom Corporation

(document number 1250_1125-UM100-R)
• SB-1 User Manual, Broadcom Corporation (document number SB1-UM00-R)
• See MIPS Run, Dominic Sweetman, Morgan Kaufmann Publishers, Inc.,

ISBN 1-55860-410-3
• MIPS64™ specification, MIPS Incorporated.

1.4 Trademarks

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 3

The following trademarks are used in this document.

• SiByte is a trademark of Broadcom Corporation
• MIPS and MIPS64 are trademarks of MIPS Corporation
• Linux is a trademark of Linus Torvalds
• NetBSD is a trademark of the NetBSD Foundation, Inc.

1.5 Revision History

This section contains a list of revisions to this document.

Who When What
Lichtenberg 2/14/2001 Created this file.
Lichtenberg 2/19/2001 Added Justin’s comments
Lichtenberg 3/15/2001 Filled out some of the empty sections, first release of

CFE source to customers
Lichtenberg 5/8/2001 Updated to include changes for version 0.0.3
Lichtenberg 6/18/2001 Major updates since firmware became operational on

real hardware
Lichtenberg 9/28/2001 Updated to reflect new directory structure (version

1.0.25)
Lichtenberg 11/29/2001 Updated to reflect version 1.0.26
Lichtenberg 2/4/2002 Updated to reflect version 1.0.27
Lichtenberg 5/8/2002 Updated to reflect version 1.0.32
Lichtenberg 7/11/2002 More updates to reflect reality
Lichtenberg 7/9/2003 Updated to reflect version 1.0.37, changes in preparation

for release to public web site
Lichtenberg 5/25/2004 Updated to reflect version 1.1.0, no more “embedded

PIC”
CGD 7/30/2004 Removed Algorithmics p5064 and p6064 boards.

Updated titles of referenced Broadcom documents.
Updated copyright year in license information section.

1.6 Notation Conventions

This section lists special notation that is used in this document.

Notation Description
Fixed-Width Text Information displayed by the computer, names of files, or

directories.
Italic Fixed Text Information you type into the computer (commands, answers to

prompts)

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 4

Bold comments Special notes or caveats
Symbols in italics File names, structure and field names, argument names.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 5

2. Overview

This chapter gives an overview of CFE’s major features and internal subsystems. The internals
will be covered in greater detail in subsequent chapters.

2.1 Supported Platforms

CFE is designed to be easily portable to designs incorporating current and future Broadcom
MIPS64 compatible broadband processors. Supported platforms include:

• Broadcom’s SiByte processor family (BCM1250, BCM1125, etc.)
• 32-bit and 64-bit memory models
• Big and little-endian operation

There are many configurable parameters at build time that may be used to customize CFE to suit
your needs.

2.2 Initialization

On startup, CFE performs the following low-level initialization:

• Reset and ROM trap handler vectors
• CPU and FPU initialization
• L1 and L2 Cache initialization
• Multiprocessor initialization
• Memory controller initialization
• PCI and LDT bus configuration
• Environment variables
• Console device initialization
• Bootstrap device initialization

Certain information, such as the physical memory layout and other critical information, are
stored by CFE and are made available to boot loaders and operating systems via CFE’s external
API.

Once initialization has completed, CFE is ready to load programs from the bootstrap device.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 6

2.3 Execution Model

While running, CFE:

• Polls all I/O devices (it never touches the interrupt controller).
• Runs with interrupts completely disabled.
• On multiprocessor configurations, a spin lock is used to guard the entry point, allowing only

one thread of execution into the firmware at a time.

2.4 Device Drivers

CFE also incorporates several built-in device drivers for console access and bootstrapping,
including:

Device Types Supported Devices
UARTs BCM1250/1125 UART

NS16550 UARTs on Generic Bus
NS16550 UARTs on PCI buses
Grammar Engine PromICE virtual serial port

Ethernet Controllers BCM1250/1125 Ethernet Controllers
Broadcom BCM4401 PCI Fast Ethernet
Broadcom BCM5700 PCI Gigabit Ethernet
Digital/Intel DC21143 (“Tulip”) PCI Ethernet Controllers
Intel i82559 PCI Fast Ethernet
National Semiconductor DP83815 PCI Ethernet
Realtek RTL8139 PCI Ethernet

Real-Time Clocks Xicor X1241
Xicor X1227
Dallas DS17887
Dallas DS1743
ST Micro M41T81

EEPROMs Microchip 24lc128
Atmel 24c02
Xicor X1241

Flash Memory CFI-Compliant Devices with AMD or Intel command sets
Non-CFI compliant devices with AMD command sets

Disk/CD-ROM Controllers BCM1250 Evaluation Board on-board IDE interface
PCI IDE controllers (various)
BCM1250/1125 PCMCIA interface (CompactFlash)

USB Host Controllers OHCI compatible PCI host controllers
USB Devices USB Keyboards

USB Hubs
Certain USB Ethernet controllers from various manufacturers,

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 7

including 3Com, LinkSys, Belkin, CATC.
Some USB disk devices with SCSI command set

New device drivers are easy to add to CFE, to permit initialization and bootstrap from external
peripherals.

2.5 Network Support

CFE includes support for network bootstrap from the BCM1250’s Ethernet controllers. The
network interface implements the following specifications:

• Address Resolution Protocol (ARP)
• Internet Protocol (IP)
• Internet Control Message Protocol (ICMP)
• Dynamic Host Configuration Protocol (DHCP)
• User Datagram Protocol (UDP)
• Trivial File Transfer Protocol (TFTP)
• Transmission Control Protocol (TCP)

The network interface is deliberately simple, providing only that functionality needed to read
configuration files and boot the system. In particular, NFS support is not provided.

Customers: Some Unix OSes, such as NetBSD, bootstrap via NFS. The intent would be
that the boot loader (loaded by CFE) would do this. NetBSD’s current network boot loader
uses CFE’s API and implements its own NFS bootstrap. See
netbsd/src/sys/arch/sbmips/stand for an example.

2.6 System Bootstrap

CFE can load programs from bootstrap devices in a variety of ways:

• Via the network from a TFTP server
• Via an IDE disk connected to the BCM1250’s generic bus
• Via an IDE CD-ROM drive connected to the BCM1250’s generic bus
• Via a PCMCIA ATA flash card in the PCMCIA slot.
• Via S-Records sent to the serial port

Loaded images can be S-records, raw binary files, or files in MIPS ELF format.

For disk devices (IDE disks and flash memory cards), the disk may either be unformatted (no file
system) or formatted with a DOS FAT-style files system.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 8

2.7 Memory Management

CFE creates and maintains a map of available physical memory. The operating system can query
this map to determine what regions of memory are available and which are reserved by the
hardware or firmware.

2.8 Environment

CFE maintains a global set of environment variables. The environment storage can be
configured to live on any non-volatile device (EEPROMs, flash, even a disk). Environment
storage is used to store system parameters such as Ethernet hardware addresses, IP addresses,
startup scripts, and other information.

2.9 Firmware API

CFE exports an API that can be used by operating systems to access the console, bootstrap
device, and to read system information. The API also permits control of secondary processor
cores in multiprocessor designs.

For example, NetBSD has two levels of bootstrap. The boot loader reads the NetBSD loader
from the boot device, and the NetBSD loader loads and launches the kernel. The NetBSD boot
loader needs a device-independent way of accessing the boot device (network, disk, etc.), so CFE
provides a simple mechanism for loaders to obtain data from the boot device. Operating systems
typically need to access the firmware for certain configuration information, such as the available
physical memory, MAC addresses of onboard Ethernet controllers, etc.

The CFE firmware API can be called from both 32-bit and 64-bit applications.

2.10 VGA and keyboard support

The BCM1250 evaluation board is packaged as an ATX (PC-style) board, including some PCI
slots and an on-board USB interface. CFE has some minimal support for bootstrap using a “PC
console” (using a USB PC keyboard, and a compatible VGA video device). See chapter XXX
for more information on the PC console.1

The following adapters are known to work with CFE’s VGA support:

• ATI Rage 128
• Nvidia Vanta-2 based cards
• 3Dfx Voodoo3 2000 PCI

These cards also support 3.3V signaling.

1 VGA support, while it has been shown to work, is not generally supported and is not tested very often at this tme.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 9

2.11 USB support

CFE includes a simple USB host stack with support for:

• An OHCI host controller
• Emulated root hub
• Standard USB hubs
• Keyboards and mice (boot protocol only)
• USB mass storage (SCSI command set)
• Some specific models of USB Ethernet controllers

Support is minimal, and this feature is generally unsupported.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 10

3. User Interface

3.1 Command Syntax

CFE has a simple but “shell-like” command interpreter. Commands you enter are broken into
words in a manner similar to the Unix shell. The double quote (“”) characters may be used to
group words together into a single word. Single quotes (‘’) do the same thing, except
environment variable expansions will not be done.

Environment variables are expanded when CFE encounters a $ symbol when scanning the
command. For example, in the command “foo $bar” the “$bar” portion will be replaced by the
current value of the environment variable bar.

The backslash character is the shell escape character. To include a dollar sign in a string, for
example, you must specify \$. To insert a backslash, use two backslashes (\\).

You can type more than one command on the command line by separating the commands with
one of the command separator symbols.

Symbol Description
Semicolon (;) Run the following command regardless of the termination status of the

current command.
And (&&) Run the following command only if the current command returns a good

termination status (0)
Or (||) Run the following command only if the current command returns a bad

termination status (not equal 0)

3.2 Special Environment Variables

The following special environment variables are used by CFE’s command interpreter:

Variable Description
PROMPT Contains CFE’s command prompt string. If unset, CFE will use the string

“CFE>”
STARTUP Contains one or more commands to be executed when the system

completes initialization. If you type Ctrl-C during startup, you can prevent
CFE from executing these commands.

F1 through F12 Contains commands to be run when you press function keys F1 through
F12

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 11

3.3 Command line editor

CFE includes a rudimentary command line editor. The keys should be compatible with most
ANSI-style terminals and terminal emulators. The command line editing keys are described
below:

Key(s) Description
Ctrl-H,
Backspace,
Delete

Delete the character to the left of the cursor

Up-Arrow,
Ctrl-P

Recall the previous command

Down-Arrow,
Ctrl-N

Recall the next command

Left-arrow,
Ctrl-B

Move cursor left one character

Right-arrow,
Ctrl-F

Move cursor right one character

Ctrl-A Move cursor to the beginning of the line
Ctrl-E Move cursor to the end of the line
Ctrl-D Delete the character under the cursor
Ctrl-U Erase the entire command
Ctrl-R Redisplay the command
Ctrl-K Delete all characters from the cursor to the end of the line and save in the

kill buffer
Ctrl-Y Insert characters from the kill buffer at the current cursor position
F1 through F12 Execute the command stored in the environment variable F1 through F12
F12 Repeat the last command (if F12 is not defined)

The command line editor will not operate properly if the command being edited exceeds the
width of the terminal emulator’s window.

3.4 Command Descriptions

The sections that follow describe the commands that are available in most versions of CFE.
Some commands are only available by enabling certain compile-time configuration options.
Some ports of CFE include many additional commands specific to the board (use the ‘help’
command to obtain a list of commands).

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 12

3.4.1 ARP

3.4.1.1 Usage

arp [options] ip-address dest-address

3.4.1.2 Description

Display or modify the ARP table. The ARP table maps IP addresses to Ethernet
(hardware) addresses on the network. Normally these addresses are obtained
automatically by the ARP protocol. You can use this command to verify the contents of
the ARP table or to force entries to appear in the table.

The ip-address parameter is an IP address to add to the table, in dotted-decimal notation.
The dest-address is the hardware address, as 12 hex digits. If you add an entry manually,
it will not time out.

3.4.1.3 Options

Option Description
-d Delete the specified entry, or all entries if ip-address is an

asterisk.

3.4.1.4 Example

CFE> arp –d *
*** command status = 0

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 13

3.4.2 BOOT, LOAD

3.4.2.1 Usage

boot [options] file-name
load [options] file-name

3.4.2.2 Description

Bootstraps the system from the specified device and file name. By default, the boot
command will read a raw binary from the specified boot device into the boot area at
0x2000_0000 and then jump to that address. Use of the boot command’s options can
cause CFE to use a different loader or override the file system defaults.

The load command functions exactly like the boot command except it does not start the
loaded program.

The file-name parameter may be a device name or a network file name. CFE will take
different actions based on the sort of device that file-name refers to:

Serial device CFE will read S-records from the serial device and transfer control to

the program when it receives a start-address record. This is equivalent
to using the S-record loader and the raw filesystem.

Disk CFE will look for a boot block on the disk device. If it finds a valid
boot block, it will load the boot loader according to the instructions in
the boot block and execute the boot loader. This is equivalent to using
the raw loader and the raw filesystem.

host:filename CFE will transfer the file from the network via TFTP and execute it.
This is equivalent to using the raw loader and the tftp filesystem.

You can override both the file system and loader choice. For example, you can store S-
records on the network or on an FAT-formatted PCMCIA card, or put an ELF binary into
flash. Most reasonable combinations of loaders and file systems should work.

3.4.2.3 Options

Option Description
-elf Choose the ELF loader
-srec Choose the S-Record loader
-raw Choose the RAW loader
-z Boot or load a compressed file (compressed via gzip). To use this

option, CFE must be built with ZLIB support (CFG_ZLIB=1 in
the Makefile)

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 14

-loader=XXX Choose the loader by name (the –elf, -srec, and –raw options are
shortcuts)

-tftp Choose the TFTP file system
-fatfs Choose the FAT file system
-rawfs Choose the RAW file system
-fs=XXX Choose the file system by name (the –tftp, -fatfs, and –rawfs

options are shortcuts)
-max=XXX Specifies the maximum number of bytes to load for the RAW file

system. Defaults to 256KB
-addr=XXX Specifies the address where the RAW filesystem will load the

binary. Defaults to 0x2000_0000.
-noclose Do not close the network before starting the program. (boot only)

3.4.2.4 Example

CFE> boot ide0:
CFE> boot –elf host:bootprogs/os_startup
CFE> boot –srec –fatfs pcmcia0:my_test.srec
CFE> load –raw –addr=80100000 host:data/my_data_file

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 15

3.4.3 COPYDISK

3.4.3.1 Usage

copydisk host:filename device-name [offset]

3.4.3.2 Description

Copies a remote file via TFTP to the specified offset on a local disk device. If you have
built a RAM disk or other sector-by-sector disk image, you can use COPYDISK to
transfer this image onto a real disk connected to your system. The offset parameter
specifies a byte offset on the local disk that will receive the first byte of the image file.

3.4.3.3 Options

None

3.4.3.4 Example

CFE> copydisk mytftphost:path/to/disk.img ide0.0
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 16

3.4.4 CPU1 (test command)

[Multiprocessor SiByte CPUs only]

3.4.4.1 Usage

cpu1 start|stop

3.4.4.2 Description

Provides a simple mechanism to verify the operation of CPU1 in multiprocessor versions
of CFE. Normally this command would not be available in production environments.

By default, the start command causes a simple loop to run on core 1 that displays
messages on the LED display, if present. The stop command forces the CPU back into
CFE’s secondary processor wait loop.

3.4.4.3 Options

Option Description
-addr=xxx Specify the starting address that CPU1 should jump to
-a1=xxx Specify the value for register A1, passed to the startup routine
-sp=xxx Specify the value for register SP, passed to the startup routine
-gp=xxx Specify the value for register GP, passed to the startup routine

3.4.4.4 Example

CFE> cpu1 start
*** command status = 0
CFE> cpu1 stop
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 17

3.4.5 D (dump)

3.4.5.1 Usage

d [options] address length

3.4.5.2 Description

Display a dump of memory, in hexadecimal.

The address option is the starting address to dump. Length specifies the number of bytes
to display. If omitted, the dump command will use the end of the previous dump and its
length as the starting address and length.

3.4.5.3 Options

Option Description
-b Dump memory as bytes
-h Dump memory as halfwords (16 bits)
-w Dump memory as words (32 bits)
-q Dump memory as quadwords (64 bits)
-p The address parameter is a physical address
-v The address parameter is a virtual address

3.4.5.4 Example

CFE> d 80000000
FFFFFFFF80000000: 0000000000000000 0000000000000000
FFFFFFFF80000010: 0000000000000000 0000000000000000
FFFFFFFF80000020: 0000000000000000 0000000000000000
FFFFFFFF80000030: 0000000000000000 0000000000000000
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 18

3.4.6 DEFEATURE

[SiByte CPUs only]

3.4.6.1 Usage

defeature new-value

3.4.6.2 Description

Sets the defeature mask for core 0’s CPU. You should use great care when using this
command, the behaviour of the defeature register changes from revision to revision of the
CPU core.

3.4.6.3 Options

None

3.4.6.4 Example

CFE> unsetenv FOO
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 19

3.4.7 E (edit)

3.4.7.1 Usage

e [options] address [data]

3.4.7.2 Description

Edit the contents of memory. Address specifies the starting address to modify. You can
list data to be written into memory on the command line. If omitted, CFE will enter a
“memory edit” mode to let you interactively edit memory values.

When in memory edit mode, you can enter ‘-‘ to back up, ‘=’ to dump memory at the
current location, or ‘.’ to edit memory edit mode.

3.4.7.3 Options

Option Description
-b Edit memory as bytes
-h Edit memory as halfwords (16 bits)
-w Edit memory as words (32 bits)
-q Edit memory as quadwords (64 bits)
-p The address parameter is a physical address
-v The address parameter is a virtual address

3.4.7.4 Example

CFE> e –q b0061000 1234567812345678
*** command status = 0
CFE> e –q 80000000
FFFFFFFF80000000: [0000000000000000]: 12345678
FFFFFFFF80000008: [0000000000000000]: .
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 20

3.4.8 F (fill)

3.4.8.1 Usage

f [options] address length [pattern]

3.4.8.2 Description

Fills a region of memory with the specified pattern.

The address option is the starting address to fill. Length specifies the number of bytes,
halfwords, words, or quads to fill. Pattern is the data to enter into the memory locations.
If not specified, pattern defaults to zero.

3.4.8.3 Options

Option Description
-b Fill memory as bytes
-h Fill memory as halfwords (16 bits)
-w Fill memory as words (32 bits)
-q Fill memory as quadwords (64 bits)
-p The address parameter is a physical address
-v The address parameter is a virtual address

3.4.8.4 Example

CFE> f 80000000 1000 ee
*** command status = 0
CFE> f –q –v A0000000 5000 0
*** command status = 0

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 21

3.4.9 FLASH

3.4.9.1 Usage
flash [options] source-file [destination-device]

3.4.9.2 Description

Updates the system’s flash or EEPROM device with the specified file. Under most
circumstances, the file to be written to flash must be the output of the mkflashimage
program in the cfe/hosttools directory. The mkflashimage program writes a header on the
front of the flash image that contains version information, the file’s length and a CRC to
prevent inadvertently writing a bad image into the system’s boot ROM.

The source-file parameter may be a device name or a network file name. If source-file
refers to a flash device, the destination-device is written with a copy of the data in the
source device. If source-file refers to a serial device such as a UART, CFE will read S-
records from the UART. The S-records must still be generated on the output of
mkflashimage so that CFE can verify the CRC. Finally, if source-file refers to a network
file name, in the form host:path/filename.flash CFE will use TFTP to obtain the file and
write it into the destination device.

The destination-device parameter may be a flash device or an EEPROM. If not specified,
destination-device defaults to flash0, which is typically the boot ROM.

3.4.9.3 Options

Option Description
-noheader Do not look for the header from mkflashimage. Use this

carefully!
-offset=value Copy the image file to an area starting at offset value in the flash

device. You can specify hex values by using the “0x” notation.
You should specify an offset that corresponds to a sector
boundary to avoid erasing sectors that contain valid data.

3.4.9.4 Example

CFE> flash flash0 flash1
CFE> flash myhost:cfe_bins/latest_cfe.flash
CFE> flash uart0 flash0

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 22

3.4.10 GO

3.4.10.1 Usage

go [options] [address]

3.4.10.2 Description

Starts execution of a program that was loaded by the load command. If address is
specified, CFE will transfer control to the specified address and ignore the start address
of the loaded program.

3.4.10.3 Options

Option Description
-noclose Do not close network devices before executing the program. You

can use this if you expect the program to return immediately to
the firmware and do not want to reinitialize the network interface.

3.4.10.4 Example

CFE> go
(program begins execution)

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 23

3.4.11 HELP

3.4.11.1 Usage

help command-name

3.4.11.2 Description

Displays help about CFE commands. With no parameter, CFE will display a summary of
all available commands.

3.4.11.3 Options

None

3.4.11.4 Example

CFE> help help

 SUMMARY

 Obtain help for CFE commands

 USAGE

 help [command]

 Without any parameters, the 'help' command will display a summary
 of available commands. For more details on a command, type 'help'
 and the command name.

*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 24

3.4.12 IFCONFIG

3.4.12.1 Usage

ifconfig [options] device

3.4.12.2 Description

Configures the specified network interface. The ifconfig command activates the network
interface, sets the IP addresses and other parameters, enabling other network-related
commands such as ping, and boot (from network devices). Most of ifconfig’s
functionality is accessed through options. The parameter device is the name of an
Ethernet device.

Only one network device may be activated at any given time. If you enable a different
network device while one is active, the active one will be deactivated first.

This command also sets the NET_DEVICE, NET_DOMAIN, NET_IPADDR, NET_NETMASK,
NET_GATEWAY, and NET_NAMESERVER environment variables.

3.4.12.3 Options

Option Description
-auto Configure the interface automatically via DHCP
-off Deactivates the interface.
-addr=a.b.c.d Specifies the IP address of the interface.
-mask=a.b.c.d Specifies the subnet mask of the interface
-gw=a.b.c.d Specifies the default gateway of the interface.
-dns=a.b.c.d Specifies the name server for the interface
-domain=string Specifies the default domain name for DNS queries (for example,

“broadcom.com”)
-speed=string Specifies the speed and duplex for the network interface,

overriding automatic detection. Valid speed settings are auto,
10fdx, 10hdx, 100fdx, 100hdx, 1000fdx, and 1000hdx.

-loopback=mode Specifies loopback mode options for the interface. Valid settings
are off, internal, and external. External loopback will cause the
Ethernet interface to enable loopback in the PHY. Internal
loopback causes loopback within the controller itself.

-hwaddr=xxx Overrides the system default hardware address for the interface.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 25

3.4.12.4 Example

CFE> ifconfig eth0 -auto
eth0: Link speed: 100BaseT FDX
Device eth0: hwaddr 40-00-00-00-01-00, ipaddr 10.21.2.10,

mask 255.255.255.0, gateway 10.21.2.1,
nameserver 10.21.192.10, domain broadcom.com

*** command status = 0
CFE> ifconfig eth0 -off
Device eth0 has been deactivated.
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 26

3.4.13 LOOP

3.4.13.1 Usage

loop [options] “command”

3.4.13.2 Description

Causes CFE to execute the specified command repeatedly. The parameter command
should be placed in quotes if it contains spaces or other punctuation.

3.4.13.3 Options

Option Description
-count=nnn Repeat nnn times.

3.4.13.4 Example

CFE> loop -count=5 "e 80000000 55"
*** command status = 0

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 27

3.4.14 MAP PCI

[SENTOSA and RHONE boards only]

3.4.14.1 Usage

map pci offset size paddr [-off] [-l2ca] [-matchbits]

3.4.14.2 Description

Maps a region of local physical memory to appear at the specified offset relative to the
BAR0 PCI register. This is used on a CPU operating in device mode to cause local
memory to be visible to the host processor. The memory at paddr for size bytes is made
available at offset bytes relative to the BAR0 register.

3.4.14.3 Options

Option Description
-off Turn off the specified mapping
-l2ca Make the region L2 cacheable
-matchbits Use match bits policy for new region

3.4.14.4 Example

Make first 1MB of memory visible to host processor.

CFE> map pci 0 0x100000 0
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 28

3.4.15 MEMORYTEST

[64-bit CFE version only]

3.4.15.1 Usage

memorytest [-cca=x] [-arena=x] [-stoponerror] [-loop]

3.4.15.2 Description

Tests all available memory. This command causes CFE to query the arena for available
memory blocks (blocks not used by the firmware) and tests them using a pattern designed
to help find addressing and data path problems. By default, the memory is tested using
uncached accelerated writes to produce a predictable data pattern on the bus. By using
the “-cca=5” switch, you can cause cacheable accesses to be used to test the memory and
this will cause reads to be interleaved with writes as the cache is evicted.

3.4.15.3 Options

Option Description
-loop Loop forever or until a key is pressed
-stoponerror Stop if error occurs while looping
-cca=* Use specified MIPS cacheability attribute
-arena=* Test only the specified block in the arena. In a “show memory”

display, zero would be the first memory block, one the second,
etc.

3.4.15.4 Example

CFE> memorytest
Available memory arenas:
phys = 0000000000000000, virt = B800000000000000, size = 000000000FE4F000

Testing memory.

Testing: phys = 0000000000000000, virt = B800000000000000, size =
000000000FE4F000
Writing: a/5/c/3
Reading: a/5/c/3
Writing: address|5555/inv/aaaa|address
Reading: address|5555/inv/aaaa|address

*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 29

3.4.16 MEMTEST

3.4.16.1 Usage

memtest [options] start-addr length

3.4.16.2 Description

Executes a very crude memory test, writing various patterns into memory and reading the
results back for verification. Patterns are written 64 bits at a time on 64-bit boundaries.

The start-addr parameter is the beginning address in memory for the memory test.
Length is the number of bytes to test.

3.4.16.3 Options

Option Description
-p The start-addr parameter is a physical address
-v The start-addr parameter is a virtual address (default)
-loop Loop continuously until a keypress or a failure

3.4.16.4 Example

CFE> memtest 80000000 10000
Pattern: 0000000000000000
Pattern: FFFFFFFFFFFFFFFF
Pattern: 5555555555555555
Pattern: AAAAAAAAAAAAAAAA
Pattern: 0000000000000000
Pattern: FF00FF00FF00FF00
Pattern: 00FF00FF00FF00FF
*** command status = 0

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 30

3.4.17 PHY DUMP

[SiByte CPUs only]

3.4.17.1 Usage

phy dump macid [register]

3.4.17.2 Description

Dumps the contents of the PHY registers on the specfied MAC (macid). If you also
specify the register parameter, only the specified register will be displayed.

3.4.17.3 Options

Option Description
-phy=x Specifies the PHY address. This value is usually 1.

3.4.17.4 Example

CFE> phy dump 0
** PHY registers on MAC 0 PHY 1 **
Reg 0x00 = 0x1140 | Reg 0x01 = 0x7969
Reg 0x02 = 0x0020 | Reg 0x03 = 0x6071
Reg 0x04 = 0x01E1 | Reg 0x05 = 0x40A1
Reg 0x06 = 0x0007 | Reg 0x07 = 0x2001
Reg 0x08 = 0x0000 | Reg 0x09 = 0x0300
Reg 0x0A = 0x0000 | Reg 0x0B = 0x0000
Reg 0x0C = 0x0000 | Reg 0x0D = 0x0000
Reg 0x0E = 0x0000 | Reg 0x0F = 0x3000
Reg 0x10 = 0x0002 | Reg 0x11 = 0x0301
Reg 0x12 = 0x0000 | Reg 0x13 = 0x0000
Reg 0x14 = 0x0000 | Reg 0x15 = 0x0000
Reg 0x16 = 0x0000 | Reg 0x17 = 0x0000
Reg 0x18 = 0x0420 | Reg 0x19 = 0xF314
Reg 0x1A = 0x0406 | Reg 0x1B = 0xFFFF
Reg 0x1C = 0x0000 | Reg 0x1D = 0x03AA
Reg 0x1E = 0x0000 | Reg 0x1F = 0x0000
*** command status = 0
CFE> phy set 0 0 0x1140

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 31

3.4.18 PHY SET

[SiByte CPUs only]

3.4.18.1 Usage

phy set macid regnum value

3.4.18.2 Description

This command writes values to the PHYs connected to the BCM1250 Ethernet controller.
The 16-bit value value is written to register number regnum (0..31) on the specifeid
macid (0..2). If your PHY is not strapped at address 1, you can specify the PHY address
with the –phy switch.

3.4.18.3 Options

Option Description
-phy=x Specifies the PHY address. This value is usually 1.

3.4.18.4 Example

CFE> phy set 0 0 0x1140
Wrote 0x1140 to phy 1 register 0x00 on mac 0
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 32

3.4.19 PING

3.4.19.1 Usage

ping [options] host

3.4.19.2 Description

Sends ICMP echo messages to the specified host and waits for a reply. The network
interface must be configured and operational (via ifconfig) for the ping command to
work. Unlike many IP implementations, loopback is not treated specially. If the network
interface is configured for loopback mode, ping will still transmit the packets through the
interface. You can use ping as a quick test of the functionality of the interface.

3.4.19.3 Options

Option Description
-t Ping forever, or until the ENTER key is struck
-x Exit immediately on the first error (use with –f or –t)
-s=nnn Specify packet size in bytes
-c=nnn Specify number of packets to echo
-A Don’t abort even if a key is pressed
-E Require all packets sent to be returned for a successful return

status

3.4.19.4 Example

CFE> ping myserver.broadcom.com
myserver.broadcom.com is alive
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 33

3.4.20 PRINTENV

3.4.20.1 Usage

printenv

3.4.20.2 Description

Displays a table of the current environment variables and their values.

3.4.20.3 Options

None

3.4.20.4 Example

CFE> printenv
Variable Name Value
-------------------- --
ETH0_HWADDR 40:00:00:00:01:00
net ifconfig eth0 -auto
ethdiag boot -elf -fs=raw flash1:
F1 f1 key macro
F3 howdy doody!
CFE_VERSION 0.0.10
CFE_BOARDNAME CSWARM
CFE_MEMORYSIZE 64
BOOT_CONSOLE uart0
NET_DEVICE eth0
NET_DOMAIN broadcom.com
NET_IPADDR 10.21.2.10
NET_NETMASK 255.255.255.0
NET_GATEWAY 10.21.2.1
NET_NAMESERVER 10.21.192.10
*** command status = 0

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 34

3.4.21 RESET

[SiByte CPUs only]

3.4.21.1 Usage

reset [-yes] –softreset|-cpu|-unicpu1|-unicpu0|-sysreset

3.4.21.2 Description

Resets the system via the SCD. The switches indicate the type of reset desired (at least
one must be specified). If you reset into uniprocessor mode (-unicpu0 or –unicpu1), a
BCM1250 processor will behave more like a BCM1125.

3.4.21.3 Options

Option Description
-yes Don’t ask for confirmation
-softreset Soft reset of the entire chip including all bus agents
-cpu Reset just the CPU cores
-unicpu0 When resetting, restart in uniprocessor mode on CPU0
-unicpu1 When resetting, restart in uniprocessor mode on CPU1
-sysreset Full system reset

3.4.21.4 Example

CFE> reset -sysreset -yes

CFE version 1.0.32 for SWARM (64bit,MP,LE)
Build Date: Thu Jul 11 11:38:59 PDT 2002 (cfe_guru@xyzzy.broadcom.com)
Copyright (C) 2000,2001,2002 Broadcom Corporation.

. . . etc.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 35

3.4.22 SAVE

3.4.22.1 Usage

save [options] file-name start-addr length

3.4.22.2 Description

The save command uses the TFTP protocol to write a region of memory to a remote file.
This can be useful if you are running test programs that log performance data or other
results in memory and wish to postprocess them on the host.

The filename parameter is similar to the load command, in the format host:filename. See
the examples below.

Like the load command, the network must be configured via the ifconfig command before
this command is used.

3.4.22.3 Options

Option Description

3.4.22.4 Example

CFE> save host:file_name 80000000 1000
4096 bytes written to host:filename
*** command status = 0

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 36

3.4.23 SET CONSOLE

3.4.23.1 Usage

set console device-name

3.4.23.2 Description

Switches CFE’s console to the specified device. Care should be taken to ensure that the
new console device is operational.

3.4.23.3 Options

None

3.4.23.4 Example

CFE> set console promice0

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 37

3.4.24 SET DATE

3.4.24.1 Usage

set date date

3.4.24.2 Description

Sets the current month, day, and year into the real-time-clock. The format of the date
should be mm/dd/yyyy.

3.4.24.3 Options

none

3.4.24.4 Example

CFE> set date 10/04/2001
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 38

3.4.25 SET TIME

3.4.25.1 Usage

set time time

3.4.25.2 Description

Sets the current hour, minute, and second into the real-time clock. The format of the time
should be hh:mm:ss, where hh is a 24-hour time.

3.4.25.3 Options

none

3.4.25.4 Example

CFE> set time 18:12:01
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 39

3.4.26 SETENV

3.4.26.1 Usage

setenv [options] varname value

3.4.26.2 Description

Sets the value of an environment variable. Optionally, the variable will also be stored in
persistent storage (flash, EEPROM). Enclose the value in quotes if it contains spaces or
other punctuation.

3.4.26.3 Options

Option Description
-ro Mark the variable read-only, preventing it from being changed in

the future. The only way to delete a read-only variable is to erase
the NVRAM, so use this carefully. It is intended for storing
Ethernet hardware addresses, serial numbers, and other data that
does not change.

-p Set the environment variable permanently in the NVRAM device.
Without this option, an environment variable will be retained in
DRAM only and will not survive a system restart.

3.4.26.4 Example

CFE> setenv MYNAME “Hi there”
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 40

3.4.27 SHOW AGENTS

[SiByte CPUs only]

3.4.27.1 Usage

show agents

3.4.27.2 Description

Display the list of agent names that are valid for the show soc command.

3.4.27.3 Options

None

3.4.27.4 Example

CFE> show agents
Available SOC agents: MC, L2, MACDMA, MACRMON, MAC, DUART, GENCS, GEN,
GPIO, SMBUS, TIMER, SCD, BUSERR, DM, IMR, SYNCSER, SERDMA
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 41

3.4.28 SHOW BOOT

3.4.28.1 Usage

show boot device-name

3.4.28.2 Description

Display the boot block from the specified block device (disk, CD-ROM). You can use
this command to verify that the boot block is correctly formatted and the checksums are
correct.

3.4.28.3 Options

None

3.4.28.4 Example

CFE> show boot ide0:

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 42

3.4.29 SHOW DEFEATURE

[SiByte CPUs only]

3.4.29.1 Usage

show defeature

3.4.29.2 Description

Displays the current value of CPU0’s defeature register.

3.4.29.3 Options

None

3.4.29.4 Example

CFE> show defeature
Defeature mask is currently 00080000
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 43

3.4.30 SHOW DEVICES

3.4.30.1 Usage

show devices

3.4.30.2 Description

Displays a list of the device drivers that have been configured in CFE.

3.4.30.3 Options

None

3.4.30.4 Example

CFE> show devices
Device Name Description
------------------- ---
uart0 SB1250 DUART at 0x10060000 channel 0
promice0 PromICE AI2 Serial Port at 0x1FDFFC00
eeprom0 Xicor X1241 EEPROM on SMBus channel 1
uart1 SB1250 DUART at 0x10060000 channel 1
flash0 New CFI flash at 1FC00000 size 2048KB
flash1 New CFI flash at 1F800000 size 2048KB
eeprom1 Microchip 24LC128 EEPROM on SMBus channel 0 dev 0x50
eth0 SB1250 Ethernet at 0x10064000 (00-02-4C-FE-09-32)
eth1 SB1250 Ethernet at 0x10065000 (00-02-4C-FE-09-33)
ide0.0 IDE disk unit 0 at 100B3E00
pcmcia0 PCMCIA ATA disk unit 0 at 11000000
clock0 Xicor X1241 RTC on SMBus channel 1
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 44

3.4.31 SHOW FLASH

3.4.31.1 Usage

show flash devicename [-sectors]

3.4.31.2 Description

Displays information about the specified flash device. If –sectors is specified, also
displays the offsets of the flash sectors.

3.4.31.3 Options

Option Description
-sectors Display flash sector information

3.4.31.4 Example

CFE> show flash flash1
FLASH: Base 000000001F800000 size 00200000 type 03(Flash) flags
00000001
NVRAM: Not supported by this flash
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 45

3.4.32 SHOW HEAP

3.4.32.1 Usage

show heap

3.4.32.2 Description

Displays statistics about CFE’s internal heap.

3.4.32.3 Options

None

3.4.32.4 Example

CFE> show heap

Total bytes: 1048576
Free bytes: 896240
Free nodes: 2
Allocated bytes: 142816
Allocated nodes: 236
Largest free node: 895240
Heap status: CONSISTENT

*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 46

3.4.33 SHOW MEMORY

3.4.33.1 Usage

show memory [options]

3.4.33.2 Description

Displays the contents of the arena, CFE’s physical memory map. The arena describes
the physical layout of memory, including which areas of memory are available for
operating system use and which are in use by the firmware or devices.

3.4.33.3 Options

Option Description
-a Display all entries, not just available DRAM

3.4.33.4 Example

CFE> show memory -a
Range Start Range End Range Size Description
------------ ------------ -------------- --------------------
000000000000-000003EAAFFF (000003EAB000) DRAM (available)
000003EAB000-000003FFFFFF (000000155000) DRAM (in use by firmware)
000004000000-00000FFFFFFF (00000C000000) Memory Controller (unused)
000010000000-00001002FFFF (000000030000) I/O Registers
000010030000-00001FBFFFFF (00000FBD0000) Reserved
00001FC00000-00001FDFFFFF (000000200000) ROM
00001FE00000-00003FFFFFFF (000020200000) Reserved
000040000000-00007FFFFFFF (000040000000) LDT/PCI
000080000000-00009FFFFFFF (000020000000) Memory Controller (unused)
0000A0000000-0000BFFFFFFF (000020000000) Reserved
0000C0000000-0000CFFFFFFF (000010000000) Memory Controller (unused)
0000D0000000-0000D7FFFFFF (000008000000) Reserved
0000D8000000-0000DFFFFFFF (000008000000) LDT/PCI
0000E0000000-0000F7FFFFFF (000018000000) Reserved
0000F8000000-0000FFFFFFFF (000008000000) LDT/PCI
000100000000-007FFFFFFFFF (007F00000000) Memory Controller (unused)
008000000000-00F7FFFFFFFF (007800000000) Reserved
00F800000000-00F9FFFFFFFF (000200000000) LDT/PCI
00FA00000000-00FCFFFFFFFF (000300000000) Reserved
00FD00000000-00FFFFFFFFFF (000300000000) LDT/PCI
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 47

3.4.34 SHOW PCI

3.4.34.1 Usage

show pci [options] [bus/dev/func]

3.4.34.2 Description

Display information about the devices attached to the PCI and LDT buses. If specified,
the bus/dev/func parameter indicates a particular device to display information about. If
no parameter is specified, all attached devices are displayed.

The show pci command can also be used to rescan the bus. Use this with caution.

3.4.34.3 Options

Option Description
-v Display verbose information
-init Reinitialize and rescan the PCI and LDT buses

3.4.34.4 Example

CFE> show pci
PCI bus 0 slot 0/0: vendor 0x166d product 0x0001 (host bridge, revision
0x01)
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 48

3.4.35 SHOW SOC

[SiByte CPUs only]

3.4.35.1 Usage

show soc agent-name [instance [section]]

3.4.35.2 Description

Displays BCM1250 SOC registers in an easy-to-read format. This command is not
expected to be included in production firmware, but it can be useful during bringup.

The agent-name parameter is an agent name. The list of valid agent names can be found
by using the show agents command.

The instance parameter specifies a numeric instance (for example, there are three MAC
agents, 0, 1, and 2). The section parameter further breaks down the set of registers to
display. For example, the DMA controller has sets of registers for each channel and
direction.

3.4.35.3 Options

Option Description
-v Display register fields where available
-all Display all registers in all agents. You may get a trap on the

functional simulator when using this option, since it does not
implement all of the registers.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 49

3.4.35.4 Example

CFE> show soc macdma 0 tx0
Register Name Address Value
------------------------------ ---------- -------------------
MACDMA 0 TX0 Config 0 0x10064C00 0000_0000_0008_0000
MACDMA 0 TX0 Config 1 0x10064C08 0000_0000_0000_0000
MACDMA 0 TX0 Descriptor Base 0x10064C10 0000_0000_03EB_C770
MACDMA 0 TX0 Descriptor Count 0x10064C18 0000_0000_0000_0000
MACDMA 0 TX0 Cur DSCR_A 0x10064C20 8002_0200_03EC_4FE0
MACDMA 0 TX0 Cur DSCR_B 0x10064C28 00A8_0000_0000_0003
MACDMA 0 TX0 Cur Dscr Addr 0x10064C30 0000_0000_03EB_C790
*** command status = 0
CFE> show soc scd
Register Name Address Value
------------------------------ ---------- -------------------
SCD System Revision 0x10020000 0000_0000_1250_01FF
SCD System Config 0x10020008 0000_0000_0048_0500
SCD Perf Cnt Config 0x100204C0 0000_0000_0000_0000
SCD Perf Counter 0 0x100204D0 0000_0000_0000_0000
SCD Perf Counter 1 0x100204D8 0000_0000_0000_0000
SCD Perf Counter 2 0x100204E0 0000_0000_0000_0000
SCD Perf Counter 3 0x100204E8 0000_0000_0000_0000
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 50

3.4.36 SHOW SPD

[SiByte CPUs only]

3.4.36.1 Usage

show spd smbuschan smbusdev

3.4.36.2 Description

Display the contents of the specified serial-presence-detect ROM on the SMBus. This
command can be useful in debugging memory problems.

3.4.36.3 Options

Option Description
-v Display entire SPD content in hex

3.4.36.4 Example

CFE> show spd 0 0x54
memtype = 07 (7) | [2] Memory type
rows = 0D (13) | [3] Number of row bits
cols = 0A (10) | [4] Number of column bits
sides = 02 (2) | [5] Number of sides
width = 48 (72) | [6] Module width
banks = 04 (4) | [17] Number of banks
tCK25 = 7.0 | [9] tCK value for CAS Latency
tCK20 = 7.5 | [23] tCK value for CAS Latency
tCK10 = 0.0 | [25] tCK value for CAS Latency
rfsh = 0x82 | [12] Refresh rate (KHz)
caslat = 0x0C | [18] CAS Latencies supported
attrib = 0x20 | [21] Module attributes
tRAS = 2D (45) | [30]
tRP = 20.00 | [27]
tRRD = 15.00 | [28]
tRCD = 20.00 | [29]
tRFC = 00 (0) | [42]
tRC = 00 (0) | [41]
*** command status = 0

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 51

3.4.37 SHOW TEMP

3.4.37.1 Usage

show temp [options]

3.4.37.2 Description

Displays the CPU temperature, for boards equipped with a temperature sensor.

3.4.37.3 Options

Option Description
-continuous Write messages to the console as the temperature changes
-stop Stop writing messages as the temperature changes

3.4.37.4 Example

CFE> show temp
Temperature: CPU: 50C Board: 21C Status:00 []
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 52

3.4.38 SHOW TIME

3.4.38.1 Usage

show time

3.4.38.2 Description

Displays the current time from the real time-clock.

3.4.38.3 Options

none

3.4.38.4 Example

CFE> show time
Current date & time is: 10/04/2001 14:10:22
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 53

3.4.39 U (unassemble)

3.4.39.1 Usage

u [options] address [length]

3.4.39.2 Description

Disassembles instructions. Address is the starting address and length is the number of
instructions to disassemble. If not specified, address and length will be the ending
address and length from the previous disassemble command.

3.4.39.3 Options

Option Description
-p The address parameter is a physical address
-v The address parameter is a virtual address

3.4.39.4 Example

CFE> u bfc01000 5
FFFFFFFFBFC01000: 00000000 sll zero,zero,#0
FFFFFFFFBFC01004: 241b1001 addiu k1,zero,#4097
FFFFFFFFBFC01008: 135b0004 beq k0,k1,0xffffffffbfc0101c
FFFFFFFFBFC0100C: 00000000 sll zero,zero,#0
FFFFFFFFBFC01010: 241a0008 addiu k0,zero,#8
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 54

3.4.40 UNSETENV

3.4.40.1 Usage

unsetenv varname

3.4.40.2 Description

Deletes the specified environment variable. If the variable was stored in persistent
storage (EEPROM, flash) it is removed from persistent storage as well..

3.4.40.3 Options

None

3.4.40.4 Example

CFE> unsetenv FOO
*** command status = 0
CFE>

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 55

4. Software Internals

4.1 Module Overview

The diagram below highlights some of the main modules within CFE:

Device Manager

Environment
Manager

Device
Driver

Device
Driver

Ethernet Datalink
IP, ARP

UDP
TFTP, DHCP, DNS

Physical
Memory Mgr

Device
Driver

CFE API Dispatch

File Systems
TFTP FAT RAW

Device
Driver

User Interface

Network Stack

User
Commands

Timer
Manager

Heap
Manager

PCI/LDT
Configuration

External API

Loaders
ELF RAWSREC

4.2 Library Modules

CFE makes use of a number of “standard” C runtime library functions. The lib/ directory
contains the routines that make up the standard “C” functions.

The routines in the library are minimal (only those functions that are actually used by the
firmware are present in the library).

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 56

4.3 System Startup

CFE’s startup module is the assembly-language file arch/mips/common/src/init_mips.S. This
module is responsible for getting the CPU ready to run the main “C” code of the firmware.
Init_mips does the following:

• Perform any early initialization specific to the board CFE is running on (board_init.S)
• Initialize the CPU (CPU, CP0, FPU, and the TLB) (arch/mips/common/src/init_mips.S)
• Initialize the L1 cache (arch/mips/cpu/sb1250/src/sb1250_l1cache.S)
• Initialize the L2 cache (arch/mips/cpu/sb1250/src/sb1250_l2cache.S)
• Begin executing code in cached space (arch/mips/common/src/init_mips.S)
• Initialize the DRAM controller, including ECC if that is configured. The DRAM

initialization can read the DRAM parameters from the SPD modules on the DIMMs if they
are present. (arch/mips/cpu/sb1250/src/sb1250_draminit.c)

• Copy the initialized data from the ROM to the RAM. (arch/mips/common/src/init_mips.S)
• Zero the BSS area. (arch/mips/common/src/init_mips.S)
• If CFE is built to be relocatable, the data segment is relocated to the end of physical RAM,

and all the internal references to data are fixed up to point to their new locations.
(arch/mips/common/src/init_mips.S)

• Initialize the “C” stack and set up GP. (arch/mips/common/src/init_mips.S)
• Start the firmware. (arch/mips/common/src/cfe_main.c)

The init_mips module and related files in arch/mips/cpu/sb1250 also includes:

• The basic trap & exception handlers. Since CFE does not make use of hardware interrupts,

all exceptions are considered errors. Unhandled exceptions are currently handled by
restarting the firmware.2 The code dispatched by the exception handlers are in the CPU-
specific area. For the bcm1250, exceptions are handled by
arch/mips/cpu/sb1250/src/exception.S.

• The TLB exception handler (in the CPU area, at arch/mips/cpu/sb1250/src/sb1250_cpu.S)
This TLB handler manages the boot area, a virtual address space assigned for boot loaders
(see sectoion 8.2)

• If CFE is configured for multiple CPUs, it will call routines in a CPU-specific module to
initialize the caches on secondary CPUs and keep those CPUs in a “holding pattern” until
they are needed by the OS.

• The external API vector is also located here. When a boot loader calls CFE’s API, the
requests are routed through this vector to the “C” code.

2 This could definitely be improved. Simple access violations inside of CFE should not warrant a restart.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 57

4.4 Multiprocessor startup

The diagram below illustrates the startup process when using multiple processor cores:

CPU #0 CPU #1..n
Low-level board init Held in reset
Basic CPU initialization
(including CP0, FPU, etc.)

L1 Cache init
L2 Cache init
Start secondary CPU CPU ‘n’ starts
Wait for secondary CPUs
to complete cache init

Basic CPU initialization
(including CP0, FPU, etc.)

 L1 Cache init
 Notify CPU 0
CPU0 resumes execution Wait for CPU 0 to initialize

memory
Switch to KSEG0 to run
cached

Initialize memory
controller

Compute data segment
relocation

Copy data from ROM to
RAM

Zero BSS
Fix up data segment
relocations

Notify other CPUs, pass
GP (relocation value)

CPU ‘n’ resumes execution

Set up “C” stack Switch to KSEG0 (cached)
CFE main program started Enter idle loop (wait for

command to jump to user
code)

The code to handle the secondary processor cores startup sequence is in
arch/mips/cpu/sb1250/src/sb1250_altcpu.S. Most of the calls into this module are made from
init_mips.S.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 58

4.5 “Bi-Endian” Startup

It is possible to build a variant of CFE that will operate regardless of the system endianness.
That is, you can set the system for either big or little-endian and CFE will start from the same
boot ROM.

When configured via CFG_BIENDIAN in the Makefile, the assembler places a special sequence
of instructions at each of the exception vectors. These instructions are valid in either endianness,
but decode differently. In particular, the opcode 0x10000014 decodes as “b .+0x54” when read
as a big-endian instruction and “bne zero,zero,.+0x44” when read as a little-endian instruction.
The latter case will be interpreted by the processor as a NOP.

Depending on system endianness, the code will either branch to the big-endian vector or fall
through. The fall-through code contains instructions to jump to the corresponding little-endian
vector 1MB into the ROM (at address 0xBFD00000). See the comments in
arch/mips/common/include/mipsmacros.h for some more information.

To build bi-endian firmware, use the rules invoked by the “biend” target of the SWARM board’s
Makefile as follows:

 gmake clean biend

 This will produce two copies of CFE, one big, and one little. The big-endian version will have
the special exception vectors, and the little-endian version will have its text segment set to start
at 0xBFD00000. The mkflashimage program combines these two images together to make a
single file you can flash into a ROM.

If your ROM is smaller than 2MB or you want to locate the little-endian firmware elsewhere,
you will need to edit the following files:

File Edit
arch/mips/common/src/init_mips.S Change the value of BIENDIAN_LE_BASE to the actual

base address that you will locate the little-endian
ROM.

arch/mips/common/src/
cfe_rom_reloc_cached_biendian.lds

Change the base address of the text segment (and its
absolute load address accordingly) to the base
address you will locate the little-endian ROM.

hosttools/mkflashimage.c Change the value of CFE_BIENDIAN_LE_OFFSET to
the displacement into the ROM where the
BIENDIAN_LE_BASE can be found.

4.6 Heap Manager

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 59

The heap manager is a very simple memory allocator for use by CFE to allocate and manage
small memory objects. It is initialized early in CFE’s startup process and is given a fixed amount
of RAM to manage. It can allocate objects with a specified size and memory alignment, which
can be very useful when dealing with devices that have alignment requirements.

Note: The heap manager is simple, but not particularly efficient. For example, it makes passes
over all allocated objects to coalesce free regions. Its allocation policy is “first fit”, which can
lead to inefficiencies in some degenerate cases. In the unlikely event that you need high-
performance memory allocation, consider allocating one block from the heap manager and
manage pieces of it locally.

CFE uses the heap manager to create one heap (the default heap) at startup. You can also use it
to create additional heaps by calling the functions in lib/lib_malloc.c directly.

The main calls to the heap manager are:

void *KMALLOC(int size,int align);
void KFREE(void *ptr);

KMALLOC allocates an object with the specified size (in bytes) and alignment. The alignment
must be a power of 2, or zero if you have no specific alignment requirements. KMALLOC will
return NULL if there is no memory left, but generally this condition is considered fatal for CFE.

KFREE will return an object to the heap.

The heap is implemented in the file lib/lib_malloc.c.

4.7 Physical Memory Manager

The physical memory manager keeps track of the physical address space and the attributes of
ranges within that space. Internally, it is called the arena (named after an ancient DOS data
structure).

It is not a memory allocator. The arena simply assigns attributes to address ranges, overwriting
attributes previously assigned.

During startup, the physical memory manager will first create an arena to describe the
BCM1250’s entire 40-bit physical address map (this is done in the CPU-specific module), and
then assign attributes to the ranges that correspond to physical memory, boot ROM, device
registers, PCI and LDT spaces, etc.

At some point later, in CFE’s generic code, CFE assigns attributes for the memory space that it
consumes (its ROM and RAM requirements).

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 60

Later, when the OS loads, it can use CFE’s external API to query the arena for ranges of a
specific type, such as “available DRAM”, to determine what regions of physical memory are
available for OS use.

The arena is implemented in lib/lib_arena.c and is used in main/cfe_mem.c

4.8 Device Manager

The device manager maintains a simple list of device drivers that can be used by CFE as
consoles, bootstrap devices, NVRAM storage, etc. For simplicity, CFE does not implement a
“device tree” or other complex data structure to describe the devices it manages. It is expected
that most implementations of CFE will include device support only for those devices needed for
system bootstrap. The operating system’s probe routines will be responsible for discovering all
the devices that are present.

Devices are named with simple names such as “uart0” and “eth0”, with a short alphabetic prefix
followed by a unit number. Some devices are more complex, such as SCSI chains, and they may
use multiple numeric suffixes to identify the device. For example, “scsi0.1.6” might mean
“SCSI bus 0, unit 1, LUN 6.”

The device manager is implemented in main/cfe_attach.c

For more information about how to write a device driver, see chapter 7.

4.9 Console Interface

The console interface provides a simple mechanism for displaying messages and reading user
input from a CFE device. CFE console devices must be of the type “serial.”

The following calls are useful for accessing the console:

xprintf(char *str,…)
console_readline(char *str,int len)
console_log(char *str,…)

The xprintf routine is a simple implementation of printf. It does not include all of the templates
usually associated with printf, and it includes a few that are not, hence the different name. (there
is a macro in the library to allow programs which call the real printf to work, but you should be
careful with the templates. The table below lists the templates that are implemented in xprintf.

Template Description
%s String values.
%c A single character
%d A signed number
%u An unsigned number

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 61

%x, %X A hexadecimal number. Capital X will display capital letters for the hex
digits (A-F)

%p, %P A hexadecimal number, sized to the width of a pointer
%b A byte (same as %02X)
%w A 16-bit word (same as %04X)
%a An Ethernet address, in the form XX-XX-XX-XX-XX-XX. To use this

template, pass the address of a 6-byte buffer.
%I An IP address, in the form nnn.nnn.nnn.nnn – to use this template, pass the

IP address as the address of a 4-byte buffer.
%p, %P A pointer, appropriately sized for 32-bit and 64-bit versions of CFE
%Z Dump a buffer. To use this template, supply two arguments, a length in

bytes and a buffer address. For example, xprintf(“%Z”,10,buffer) will
display a hex dump of 10 bytes starting at buffer.

The templates %s, %d, %u, and %x take the following modifiers:

Modifier Description
nn Field width, for example %30s. Numbers will be right justified in the field,

strings will be left-justified in the field.
0nn For numeric templates, fill the leading spaces with ‘0’ characters.
l For numeric templates, indicates that the argument is of a “long” type.
ll For numeric templates, indicates that the argument is of a “long long” (64-

bit) type.

The xprintf routine does not support floating point.

The console_log routine is useful for “background” processes like polling loops. It works with
the console_readline routine to avoid disturbing the current state of input on the console, so you
can display messages (for example, Ethernet link status changes) without disrupting a partially-
entered command line.

The console_readline_noedit routine reads a line of text from the console (similar to gets). It
provides rudimentary line editing (basically, backspace) and will return when a complete line of
text is entered. You can call console_readline to get line input with editing.

The console interface is implemented in main/cfe_console.c.

The xprintf routines are implemented in lib/lib_printf.c.

4.10 Environment Manager

The environment manager is responsible for tracking simple textual environment variables and
other small values and storing them in persistent storage such as an EEPROM or flash device.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 62

The environment manager is normally associated with a flash or NVRAM device driver during
startup.

On the NVRAM device, the environment manager represents the environment strings as a set of
TLV (type/length/value) encoded structures. The TLVs are represented on the NVRAM device
as follows:

Type
1 byte

Length
1-2 bytes

Value
n bytes

Type 0
1 byte

Type
1 byte

Length
1-2 bytes

Value
n bytes … …

The length field represents the length of the data that follows the length field, not including the
type and length fields. The low-order bit of the type field indicates whether the length field is
one or two bytes. If the low-order bit is one the length field is one byte. If the low-order bit is
zero, the length field is two bytes, with the high-order byte stored first.

The following types are defined:

TLV Type Symbol Description
0x00 ENV_TLV_TYPE_END End. This is the last byte in a list of TLVs.
0x01 ENV_TLV_TYPE_ENV Environment. This TLV is an environment

variable’s value.
0x80..0xEF User defined TLVs with the high-order bit set are reserved for

use by customers. You should still set the low-
order bit to indicate whether the TLV uses a one or
two-byte length field.

0xF0..0xFF Reserved Reserved for future use.

Each environment variable’s value has the following format:

Name
n bytes

ASCII ‘=’
1 byte

Value
n bytes

Flags
1 byte

The flags field indicates special flags to describe the environment variable. The flags may be
OR’d together, but not all combinations make sense.

Flag Symbol Description
0x01 ENV_FLG_BUILTIN “built-in” environment variable. These variables

are not stored to the NVRAM (they are used at run
time).

0x02 ENV_FLG_READONLY “read only.” These variables may not be altered or
deleted after they are set the first time. This is
useful for variables that contain serial numbers and
Ethernet MAC addresses that are allocated once

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 63

and never changed.

You can use either an EEPROM or a flash memory device to store the environment. In either
case, the underlying device driver must implement the IOCTL_NVRAM_GETINFO call so that the
environment manager can determine what region of the flash or EEPROM device it is permitted
to use for environment storage (typically, one sector is enough).

Environment functions are implemented in main/env_subr.c. The routines to write the
environment to the nonvolatile device are in main/nvram_subr.c.

4.11 Timer Manager

The timer manager provides a simple mechanism for device drivers and the network subsystem
to keep track of the passage of time. Because CFE does not use interrupts for anything, even the
timer is polled. The MIPS CP0 COUNT register is polled periodically to accumulate ticks into
the global tick count.

The macro POLL() should be called periodically to keep the tick count up-to-date. At 800MHz,
the counter will overflow every 5 seconds or so.

The global time is maintained in the variable cfe_ticks and represents the number of ticks since
startup. This tick count is maintained in units of CFE_CLOCKSPERTICK, which defaults to 10
ticks per second.

The timer manager maintains a list of routines that need to be called periodically. You can use
the cfe_bg_add routine to add a routine to the background processing list.

The timer manager includes some macros to make it easy to wait for device timeouts. An
example device timeout is shown below:

 int64_t timer;

 TIMER_SET(timer,5*CFE_HZ); /* wait for 5 seconds */
 while (!TIMER_EXPIRED(timer)) {
 POLL();
 /* do stuff to device */
 }

The timer routines are implemented in main/cfe_timer.c and main/cfe_background.c

4.12 Network Subsystem

CFE includes support IPV4 networking for network bootstrap. The functions are relatively
limited, but it should be easy to add support for more protocols and features should that become
necessary.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 64

The network subsystem consists of all of the files in the net/ directory. It implements the
following standards:

• Ethernet V2 (DIX) style datalink interface and protocol dispatch
• Address Resolution Protocol (ARP) (RFC826)
• Internet Protocol (IP) (RFC791)
• Internet Control Message Protocol (ICMP) (RFC792)
• User Datagram Protocol (UDP) (RFC768)
• Transmission Control Protocol (TCP)
• Trivial File Transfer Protocol (TFTP) (RFC1350)
• Domain Name System Protocol (query only) (DNS) (RFC1035)
• Dynamic Host Configuration Protocol (DHCP) (RFC2131)

The network subsystem is designed to be simple and portable, and operates on top of CFE’s
device interface for access to the Ethernet driver. Therefore, it is possible to re-use these
components to write a second-level boot loader.3

The top-level interface to the network subsystem is in the file net/net_api.c. It includes high-
level functions for activating the IP stack and transferring data.

The TCP stack is normally not configured into CFE, since it is generally not used. To enable the
TCP stack, set CFG_TCP to 1 in your bsp_config.h file.

4.13 File Systems

CFE internally supports the notion of a “file system,” but the concept is greatly scaled back for
simplicity. Essentially, a CFE file system is a collection of routines for reading named files from
some boot device. The boot device need not be a disk. The file systems allow common code to
be used for parsing ELF headers and other formatted files.

CFE currently includes support for the following file systems:

Name Description
tftp The tftp filesystem provides access to files on a remote host’s TFTP server.

You can open, read, and seek (forward only) in a tftp file. The TFTP
filesystem uses the default network device (the device must be configured
before you attempt to open a file).

fat
rfat

The fat filesystem provides access to files formatted with an MS-DOS style
FAT16 or FAT12 filesystem. These filesystems are typically found on floppy
disks, compactflash cards, and other small block devices. FAT32 support is
currently not provided. There are two variants of the fat filesystem. The
standard one, fat, is used with media that supports a hard-disk-style partition

3 Of course, separating the network code into a second-level boot loader has not been tested yet, but it is possible.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 65

boot block. The rfat filesystem assumes there is no such boot block. Fat
filesystems are found on hard drives, ZIP drives, and PCMCIA Flash cards.
Rfat filesystems are on standard floppy disks.

raw The raw filesystem provides access to a raw block device. If you stored an
ELF file on a disk, tape, or flash memory, you can read the file from that
device without having any standard on-disk structure. File names on raw
devices represent byte offsets into the device.4

File systems are stored in a global file system table and may be accessed with the following call:

const fileio_dispatch_t *cfe_findfilesys(const char *name)

You can obtain a dispatch table by name.

4.14 PCI/LDT Configuration

The PCI and LDT configuration module is called during CFE’s startup. It is responsible for
initializing the PCI and LDT host (and subordinate) bridges, locating devices, and setting up the
BARs. Operating systems need not reconfigure the PCI or LDT bus; it is expected that they can
use the configuration that CFE has provided.

The main call (in main/cfe_main.c) is:

void pci_configure(flags);

This routine configures and initializes the PCI and LDT buses and displays some diagnostic
information about devices present on the bus. Once initialized, device drivers within CFE can
query for the presence of PCI and LDT devices and operating system software can scan
configuration space to locate the devices that were configured.

CFE provides some basic functions to allow device drivers to query the bus and obtain the
contents of registers in configuration space. These functions and macros are declared in
pci/pcivar.h.

4.15 User Interface

The user interface routines were designed to make it easy to add new commands without
changing a centralized command table. Internally, CFE maintains a tree of words, with pointers
to command functions at the leaves of the tree. Commands must be unique (you cannot have just
a “show” command if you also have “show devices”) but otherwise you can make the command
syntax as complex as you want.

4 Well, eventually.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 66

4.15.1 Adding a command
To add a command, call the cmd_addcmd routine from your board_finalinit routine as follows:

int cmd_addcmd(char *command,
 int (*func)(ui_cmdline_t *,int argc,char *argv[]),
 void *ref,
 char *help,
 char *usage,
 char *switches);

For example:

cmd_addcmd("arp",
 ui_cmd_arp,
 NULL,
 "Display or modify the ARP Table",
 "arp [-d] [ip-address] [dest-address]\n\n"
 "Without any parameters, the arp command will display the contents of the\n"

"arp table. With two parameters, arp can be used to add permanent arp\n"
"entries to the table (permanent arp entries do not time out)",

 "-d;Delete the specified ARP entry. If specified, ip-address\n"
"may be * to delete all entries.");

Note: pay special attention to the presence or absence of commas to separate the string
parameters in the above function call. Some of the strings are very long and are spread over
several lines of source text.

The command parameter is the name of the command (use spaces to separate words). CFE will
break this into tokens to find the appropriate place in the tree for the command descriptor.

The func parameter is a pointer to the function to call when the command is executed. The ref
parameter will be placed in the ui_cmdline_t structure as an extra pointer. Most CFE functions
do not use the ref parameter.

The help parameter is a one-line description of the command. It should not contain any
newlines.

The usage parameter is the command’s verbose description text. You can embed newline (\n)
characters in this string and CFE will format the text appropriately when the help command is
used to display the text.

The switches parameter serves to functions: it lists the valid switches for the command and also
the help text for each of the switches. The general format of the switches parameter is:

 -swname;description|-swname=*;description…

Each switch description is separated by a pipe (|) character. A semicolon separates switch names
from their descriptions. If a switch accepts parameter data, you should list the switch in the form
“-swname=*” so that CFE will know to expect a value for the switch.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 67

4.15.2 Calling the command function
CFE will call the command function when your command is entered using the following
prototype:

int (*func)(ui_cmdline_t *cmd,int argc,char *argv[]);

The argc and argv parameters are similar to what you would expect in “C” programs, except
argv[0] is the first argument, not argv[1].. The argc parameter indicates the number of
arguments that followed your command when it was entered, with zero meaning no additional
arguments were supplied.

The cmd parameter is a pointer to the context data structure that describes your command as it
was parsed by the command interpreter. You can pass this value back to the command routines
to obtain information about switches, values, and parameter values, using the routines in the
following list:

• int cmd_sw_value(ui_cmdline_t *cmd,char *swname,char **swvalue)

Looks up the switch swname. If present, fills in swvalue with a pointer to the switch’s value
and returns TRUE. Otherwise, returns FALSE.

• int cmd_sw_isset(ui_cmdline_t *cmd,char *swname)
Returns TRUE if swname is present, FALSE otherwise.

• char *cmd_getarg(ui_cmdline_t *cmd,int argnum)
Obtains the value of argument argnum. This is the same as argv[argnum] except
cmd_getarg will return NULL if argnum is out of range.

• char *cmd_sw_name(ui_cmdline_t *cmd,int swidx)
Gets the name of the nth (swidx) switch supplied for this command. This can be used if you
want to allow the same switch to be specified multiple times.

• int cmd_sw_posn(ui_cmdline_t *cmd,char *swname)
Obtains the position that swname appears relative to the arguments. If swname appears
before the first argument, this function returns zero. Returns –1 if the switch was not
specified at all.

When your function returns, it should return zero for a successful return status, or else one of the
error codes in cfe/include/cfe_error.h.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 68

5. The BCM1250 Reference Designs

There are two primary BCM1250 reference designs: SWARM (BCM912500A) and SENTOSA
(BCM12500E). SWARM is an ATX-style board, and SENTOSA is a PCI card.

This chapter has an overview of the major features of these two designs.

5.1 Board Description (SWARM)

5.1.1 Features

The BCM912500A Reference Design (SWARM) is a demonstration board for the BCM1250
SOC. Some of the features of this board include:

• The BCM1250 Processor
• Four DDR SDRAM DIMM slots (two on each memory controller)
• Two Gigabit Ethernet ports with Broadcom BCM5411 PHYs
• PCI bus with two 32-bit 33/66Mhz slots
• LDT connector for user expansion
• LDT-to-PCI bridge (API Networks “Sturgeon”)
• PCI bus attached to LDT bridge with two 64-bit 66Mhz slots
• Opti USB controller connected to PCI bus
• 2Mbytes Flash for bootstrap
• Direct connector for Grammar Engine PromICE ROM emulator
• Audio codec connected to a synchronous serial port
• Four-character LED display connected to BCM1250 Generic Bus
• IDE disk interface connected to BCM1250 Generic Bus
• PCMCIA slot
• Philips video codec connected to 8-bit FIFO interface
• Maxim 1617A temperature sensor (SMBUS)
• Microchip 24LC128C serial EEPROM
• Xicor X1241 time-of-day clock and serial EERPOM, or ST Micro M41T81 clock
• Two UART ports
• EJTAG connector

5.1.2 Jumpers and Settings
Refer to the BCM912500A documentation for a complete list of jumper settings. The table
below lists the important jumper settings and switch values for getting started with CFE:

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 69

Jumper Default Description
SW1 0 Configuration switch (see below)
SW2 0 CPU Core Frequency
J1 Installed Selects big-endian operation.
J45 Removed SYSRESET. Controls reset pin on SWARM peripherals
J41 Removed COLD_RESET. Controls the cold reset input to the BCM1250.
J42 Removed WARM_RESET. Controls the warm reset input the BCM1250.
SW3,4,5 0 Frequency dividers for the LDT bridge
J19 All

Removed
When installed, USB controller will be available. When removed,
USB controller is disabled. Since the USB controller is a 33Mhz
PCI device, you need to remove the jumpers to test 66Mhz PCI
operation with a card in the PCI slot.

J31 Installed These jumpers are used to connect the ROM chip selects (CS0 and
CS1) to the flash ROM or ROM emulator connectors, respectively.
If the jumpers are installed such that they are perpendicular the
ROM Emulator connector, the emulator will be on CS0 and the flash
will be on CS1. If you turn the jumpers 90 degrees such that they
are parallel to the ROM emulator connector, the flash appear on CS0
and the ROM Emulator will appear on CS1.

On most newer-revision SWARM boards, there is only one jumper
for J31. Install the jumper to use the ROM emulator on CS0, and
remove the jumper for the flash on CS0.

The configuration switch can be used to set certain run-time parameters for CFE. Set the switch
according to the table below:

Setting Description
0 Console on UART 0 at 115200 baud. PCI/LDT will not be configured.
1 Console on PromICE virtual serial port. PCI/LDT will not be configured.
2 Console on UART 0 at 115200 baud. PCI/LDT will be configured
3 Console on PromICE virtual serial port. PCI/LDT will be configured.
4 not used
5 not used
6 Console on UART 0 at 115200 baud, LDT configured in slave mode for dual-

hosted chains.
7 “Safe mode.” Console on UART 0 at 115200 baud. CFE will not read the

NVRAM contents but will allow you to write them. You can use this to recover
from a corrupt NVRAM.

8-F not used

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 70

5.1.3 Firmware Devices
The table below lists the CFE devices that are available in the SWARM version of CFE:

Device Description
uart0 UART Channel A (bottom UART connector)
uart1 UART Channel B (top UART connector)
promice0 PromICE virtual serial port
eeprom0 Serial ROM on the Xicor X1241 clock. This eeprom is used to store the

environment variables
eeprom1 Serial ROM on the Microchip 24LC128. You can boot from this serial ROM

by putting a jumper on J2
eth0 Ethernet controller connected to MAC0 (J12)
eth1 Ethernet controller connected to MAC1 (J13)
ide0 IDE disk controller connector (J35)
pcmcia0 PCMCIA interface (J36)
flash0 Flash connected to CS0 (either the boot flash or the ROM emulator,

depending on the setting of J31)
flash1 Flash connected to CS1 (either the boot flash or the ROM emulator,

depending on the setting of J31)
clock0 The real-time clock section of the Xicor X1241 clock.

5.2 Addresses of onboard peripherals

This section contains a summary of the SWARM address map. These constants are defined in
the file swarm.h.

5.2.1 Generic Bus Assignments

Address Size Chip Select Description
0x1FC00000 2MB CS0 Boot ROM
0x1F800000 2MB CS1 Alternate Boot ROM
 CS2 Unused
0x100A0000 64KB CS3 LED Display
0x100B0000 64KB CS4 IDE Disk
 CS5 Unused
0x11000000 64MB CS6 PCMCIA interface
 CS7 Unused

5.2.2 GPIO Signals

Signal Direction Description
GPIO0 Output Debug LED

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 71

GPIO1 Output Sturgeon NMI
GPIO2 Input PHY Interrupt
GPIO3 Input Nonmaskable Interrupt (SW11)
GPIO4 Input IDE Disk Interrupt
GPIO5 Input Temperature sensor alert
GPIO6 N/A Used by PCMCIA
GPIO7 N/A Used by PCMCIA
GPIO8 N/A Used by PCMCIA
GPIO9 N/A Used by PCMCIA
GPIO10 N/A Used by PCMCIA
GPIO11 N/A Used by PCMCIA
GPIO12 N/A Used by PCMCIA
GPIO13 N/A Used by PCMCIA
GPIO14 N/A Used by PCMCIA
GPIO15 N/A Used by PCMCIA

5.3 Board Description (SENTOSA)

5.3.1 Features

The BCM912500E Reference Design (SENTOSA) is a demonstration board for the BCM1250
SOC. Some of the features of this board include:

• The BCM1250 Processor
• 256MB of DDR memory soldered to the board (128MB on each memory channel)
• Two Gigabit Ethernet ports with Broadcom BCM5411 PHYs
• PCI device mode (card is configured as a PCI device, you can install it in a PC or other host).
• 2Mbytes Flash for bootstrap
• Direct connector for Grammar Engine PromICE ROM emulator
• Maxim 1617A temperature sensor (SMBUS)
• Two Microchip 24LC128C serial EEPROMs
• Xicor X1241 time-of-day clock and serial EERPOM, or ST Micro M41T81 clock
• One UART port
• EJTAG connector
• Samtec connector for LDT expansion

5.3.2 Jumpers and Settings
Refer to the BCM912500E documentation for a complete list of jumper settings. The table
below lists the important jumper settings and switch values for getting started with CFE:

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 72

Jumper Default Description
SW1 0 Configuration switch (see below)
SW4-1 Off ON to boot from PromICE, OFF to boot from flash
SW4-2 On ON for big-endian, OFF for little-endian
SW2 COLD RESET. Press to reset the BCM1250
SW3 NMI Wired to GPIO4 – if software configures this, you can cause use it to

cause an NMI

The configuration switch can be used to set certain run-time parameters for CFE. Set the switch
according to the table below:

Setting Description
0 Console on UART 0 at 115200 baud. PCI/LDT will not be configured.
1 Console on PromICE virtual serial port. PCI/LDT will not be configured.
2 Console on UART 0 at 115200 baud. PCI/LDT will be configured
3 Console on PromICE virtual serial port. PCI/LDT will be configured.
4 not used
5 not used
6 Console on UART 0 at 115200 baud, LDT configured in slave mode for dual-

hosted chains.
7 “Safe mode.” Console on UART 0 at 115200 baud. CFE will not read the

NVRAM contents but will allow you to write them. You can use this to recover
from a corrupt NVRAM.

8-F not used

5.4 Board Description (RHONE)

5.4.1 Features

The BCM91125E Reference Design (RHONE) is a demonstration board for the BCM1125/H
SOC. Some of the features of this board include:

• The BCM1125/H Processor
• 128MB of DDR memory soldered to the board
• Two Gigabit Ethernet ports with Broadcom BCM5421 PHYs
• PCI device mode (card is configured as a PCI device, you can install it in a PC or other host).
• 16Mbytes Flash for bootstrap
• Direct connector for Grammar Engine PromICE ROM emulator
• Maxim 6654 temperature sensor (SMBUS)
• Two Microchip 24LC128C serial EEPROMs

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 73

• ST Micro M41T81 real-time clock
• One UART port
• EJTAG connector
• Samtec connector for LDT expansion
• Four character LED display connected to BCM1125/H Generic Bus

5.4.2 Jumpers and Settings
Refer to the BCM91125E documentation for a complete list of jumper settings. The table below
lists the important jumper settings and switch values for getting started with CFE:

Jumper Default Description
SW1 0 Configuration switch (see below)
SW4-1 Off ON to boot from PromICE, OFF to boot from flash
SW4-2 On ON for big-endian, OFF for little-endian
SW2 COLD RESET. Press to reset the BCM1250
SW3 NMI Wired to GPIO4 – if software configures this, you can cause use it to

cause an NMI

The configuration switch can be used to set certain run-time parameters for CFE. Set the switch
according to the table below:

Setting Description
0 Console on UART 0 at 115200 baud. PCI/LDT will not be configured.
1 Console on PromICE virtual serial port. PCI/LDT will not be configured.
2 Console on UART 0 at 115200 baud. PCI/LDT will be configured
3 Console on PromICE virtual serial port. PCI/LDT will be configured.
4 not used
5 not used
6 Console on UART 0 at 115200 baud, LDT configured in slave mode for dual-

hosted chains.
7 “Safe mode.” Console on UART 0 at 115200 baud. CFE will not read the

NVRAM contents but will allow you to write them. You can use this to recover
from a corrupt NVRAM.

8-F not used

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 74

5.4.3 Firmware Devices
The table below lists the CFE devices that are available in the SENTOSA version of CFE:

Device Description
uart0 UART Channel A (bottom UART connector)
promice0 PromICE virtual serial port
eeprom0 Serial ROM on the Xicor X1241 clock. This eeprom is used to store the

environment variables
eth0 Ethernet controller connected to MAC0
eth1 Ethernet controller connected to MAC1
flash0 Flash connected to CS0 (either the boot flash or the ROM emulator,

depending on the setting of SW4-1)
flash1 Flash connected to CS1 (either the boot flash or the ROM emulator,

depending on the setting of SW4-1)
clock0 The real-time clock section of the Xicor X1241 clock.

5.4.4 Addresses of onboard peripherals
This section contains a summary of the SENTOSA address map. These constants are defined in
the file sentosa.h.

5.4.5 Generic Bus Assignments

Address Size Chip Select Description
0x1FC00000 2MB CS0 Boot ROM
0x1F800000 2MB CS1 Alternate Boot ROM
 CS2 Unused
 CS3 Unused
 CS4 Unused
 CS5 Unused
 CS6 Unused
 CS7 Unused

5.4.6 GPIO Signals

Signal Direction Description
GPIO0 Output Debug LED
GPIO1 N/A Not used
GPIO2 N/A Not used
GPIO3 N/A Not used

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 75

GPIO4 N/A Not used
GPIO5 N/A Not used
GPIO6 N/A Not used
GPIO7 N/A Not used
GPIO8 N/A Not used
GPIO9 N/A Not used
GPIO10 N/A Not used
GPIO11 N/A Not used
GPIO12 N/A Not used
GPIO13 N/A Not used
GPIO14 N/A Not used
GPIO15 N/A Not used

5.5 Loading CFE via a ROM Emulator

When developing your own version of CFE, or adapting CFE’s routines for your own firmware,
you can use the BCM912500A’s ROM Emulator connector to connect a Grammar Engine
PromICE. See http://www.gei.com for more details on Grammar Engine products.

The PromICE model used most commonly with the BCM912500A is the P1160-90, a 16Mbit
(2Mbyte) emulator with 90ns access time.

If you have another ROM emulator, it should be simple to adapt the connector on the
BCM912500A for other emulation products. The ROM emulator connector (J30) is 5V-tolerant.
You can get the pinout from the schematic.

To connect a PromICE to the BCM912500A, make the following connections:

• Attach the emulation cable to J30 such that it exits towards the Ethernet connectors. Be sure

pin 1 is correctly aligned. Note: Most of GEI’s emulation connectors have pin 1 marked on
the wrong end of the cable. Be sure pin 1 on the PromICE unit itself is on the same side of
the connector as pin 1 on the BCM912500A.

• Place jumpers on the EXT and 32 pins on the PromICE unit. Remove the jumper from the
ROM pins if present.

• Set the jumpers on J31 so that they are perpendicular to the ROM Emulator connector.
• Connect the PromICE to your host computer.
• If you want to use the virtual console port, or want to use the emulated ROM as RAM,

connect the write jumper from J67 pin 1 to the MWR pin on the PromICE.

Below is a sample loadice.ini file for the PromICE. This assumes you have connected your
PromICE to the parallel port on your PC:

output=com1
pponly=LPT1

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 76

rom 2M
word 8
burst 0
file cfe.srec
ailoc 1FFC00,19200
aidirt

Press the COLD RESET button (SW9) on the BCM912500A after reloading the PromICE to
start the new firmware.

5.6 Installing a new version of the firmware into the flash

If you have the ROM Emulator attached, you can easily copy the contents of the ROM Emulator
to the onboard flash by using the following CFE command:

 CFE> flash flash0 flash1

This command causes CFE to copy the contents of flash0 (the ROM Emulator) to flash1 (the
onboard flash chip). After you have copied the data, you can rotate J31 90 degrees and the
BCM912500A will boot from the onboard flash.

If you want to upgrade CFE without a ROM emulator and have generated a cfe.flash file, you
can place this file on your TFTP server and do:

 CFE> ifconfig eth0 … /* configure Ethernet interface */
 CFE> flash hostname:path/to/cfe.flash flash0

Once the flash update is complete, you can restart your board to run the newly-installed CFE.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 77

6. Porting CFE to a new design

6.1 Tools required for building CFE

The Broadcom tool chain is used for building CFE from sources. Among the compilers
supplied, the sb1-elf toolchain is appropriate for building firmware, boot loaders, and other
standalone applications.

The sb1-elf tools are somewhat of a misnomer, since resulting binaries work just fine on actual
hardware. You will probably run into build issues if you use the Linux or NetBSD toolchains to
compile CFE.

For a “quick start”, you can compile the CFE source for the SWARM or SENTOSA (BCM1250
Reference Design) by following the steps shown below:

 setenv PATH /path/to/sb1-elf-tools/bin:$PATH
 cd cfe/swarm
 gmake

The build procedure should produce the following files:

File Description
cfe CFE binary (ELF executable)
cfe.bin CFE binary (ROM image file)
cfe.srec CFE binary (S-records for a ROM emulator or programmer)
cfe.flash Flash update file (can be put on a TFTP server and downloaded to a

target to update its flash)
cfe.flash.srec S-Records for the flash update file (cfe.flash) – this is used if you

want to update the flash of a target that does not support TFTP. In
this case, you update the flash via a serial port.

cfe.dis Disassembly output
cfe.map Linker map file

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 78

6.2 Directory structure

The top of the CFE source tree contains the following directories:

Path Contents
cfe/ Main CFE sources (see next section)
docs/ Documentation, including this file
build/ Build areas

6.2.1 The build directory (build/)

The build area, under “build/” contains the makefiles for various targets. In particular, the
directory “build/broadcom” contains the build areas for supported BCM1250 reference designs.

Path Contents
broadcom/swarm/ Broadcom evaluation board build area
broadcom/sentosa/ Broadcom evaluation board build area
broadcom/rhone/ Broadcom evaluation board build area
broadcom/sim/ A build area for a variant of CFE suitable for use under the

functional simulator.
broadcom/vcs/ A minimal build area for making a variant of CFE suitable for

execution under the RTL simulator

6.2.2 The CFE source directory (cfe/)

Below this level, in the “cfe/” directory are the following:

Path Contents
cfe/arch/mips Contains all MIPS architecture processor-related

directories. While CFE is not intended for use on other
CPU architectures, the directory structure permits it.

cfe/arch/mips/cpu/sb1250 Contains BCM1250-related sources and includes.
Initialization code, drivers, and include files specific to
the BCM1250 are placed here.

cfe/arch/mips/board/boardname Contains sources used by a particular board (e.g.,
swarm). Sources common to a particular board or
variants of similar boards are placed here. The “board
support package” files that contian initialization
routines to personalize CFE with device drivers and

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 79

custom commands are also placed here.
cfe/arch/mips/common Contains sources and includes common to all MIPS

designs. The init_mips.S file is common across all
MIPS designs.

cfe/applets/ Sample programs that call CFE’s external API
cfe/dev/ Device drivers for the BCM1250’s peripherals and

other devices
cfe/include/ Shared include files
cfe/lib/ Standard library functions (strcpy, malloc, etc.)
cfe/main/ Main program and startup routines
cfe/net/ Network stack (ARP, IP, ICMP, UDP, TFTP, etc.)
cfe/pccons/ Special routines for initializing the “PC console”
cfe/pci/ PCI and LDT enumeration and configuration code
cfe/ui/ User interface functions (implementations of user

commands)
cfe/usb/ USB host stack for the PC console’s keyboard
cfe/x86emu/ An X86 emulator (from the Xfree86 source) that is

used to initialize a VGA adapter. This code has a BSD-
style license.

cfe/verif/ Some special routines used for running verification test
programs under control of the firmware. Normally
these routines are not used.

cfe/vendor/ Directory containing vendor extensions to CFE

6.2.3 Board, CPU, and Architecture directories

While CFE is primarily intended for MIPS audiences, particularly users of the BCM1250 and
other members of the Broadcom Broadband Processor product line, some changes have been
made to the directory tree to reduce the pain of moving CFE to other MIPS processors and other
processor architectures.

Unfortunately, this has complicated the directory tree. This section attempts to explain the intent
of the different directories to aid you in locating files.

• Architecture (MIPS) specific files are in the cfe/arch/mips/common directory. This directory

contains code and include files that are common to all MIPS platforms, such as assembly-
language macros, the disassembler, and the startup routine.

• CPU (BCM1250) specific files are in the cfe/arch/mips/cpu/sb1250 directory. This directory
contains code and include files that pertain only to the SB1250, such as multiprocessor
startup code, cache initialization, memory initialization, and device drivers for on-chip
peripherals.

• Board (SWARM) specific files are in the cfe/arch/mips/board/swarm directory. This
directory contains code and include files that are used on the SWARM board and boards

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 80

similar to it, such as SWARM-specific device drivers and include files, and the startup
routines that personalize CFE to the devices present on the SWARM.

When you create your own BCM1250-based design, you can populate your
cfe/arch/mips/board/xxxx directory, where xxxx is your board name, and then generate a
build/companyname/xxxx directory to contain the makefile and the build area.

6.3 Makefile flow

CFE’s makefile is broken into many small pieces to separate functionality into small modules.
The “sub-makefiles” are responsible for communicating the names of object files and C compiler
flags to the main makefile.

The makefile that make initially reads is in your target’s build directory. This makefile reads the
platform-independent makefile in main/cfe.mk which in turn reads other makefiles. Refer to the
table below for the flow of makefiles:

Step Makefile
Make reads the Makefile in your build
directory. This makefile sets the TOP macro
and some global configuration options and
includes the platform-independent Makefile

Makefile

The platform-independent Makefile is read ${TOP}/main/cfe.mk

The version number is set ${TOP}/main/cfe_version.mk

Defaults are set for configuration values not
set by the makefile in the build directory

${TOP}/main/cfe.mk

Directory names are calculated for the
architecture, CPU, and board-specific
directories. These directories are also
converted into the INCLUDE path for header
files and the VPATH for source files

${TOP}/main/cfe.mk

The tools are configured from the
architecture-specific directory. This makefile
names the version of GCC and the specific
compiler flags needed for building on the
MIPS architecture

${TOP}/arch/mips/common/src/Makefile

The main target (all) is defined ${TOP}/main/cfe.mk

The architecture Makefile is read. This
makefile appends object names to ALLOBJS

${TOP}/arch/mips/common/src/Makefile

The CPU-specific Makefile is read. This
makefile appends object names to ALLOBJS

${TOP}/arch/mips/cpu/sb1250/src/Makefi
le

The board-specific Makefile is read. This
makefile appends object names to ALLOBJS

${TOP}/arch/mips/board/swarm/src/Makef
ile

Some default rules are declared for certain
locally-built tools.

${TOP}/main/cfe.mk

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 81

Finally, the ALL target (in caps) in the
original Makefile is referenced, which causes
Make to build the files ‘cfe’ and ‘cfe.flash’

Makefile

The linker-script Makefile is read to read the
rules for building the target.

${TOP}/main/cfe_link.mk

6.4 Example Makefile

An example Makefile (in the target directory) appears below:

TOP = ../cfe
ARCH = mips
BOARD = swarm
CPU = sb1250

CFG_MLONG64 ?= 0
CFG_LITTLE ?= 0
CFG_RELOC ?= 1
CFG_UNCACHED ?= 0
CFG_VAPI ?= 0
CFG_BOOTRAM ?= 0
CFG_BOARDNAME = "SWARM"
CFG_PCI = 1

include ${TOP}/main/cfe.mk

BSPOBJS = swarm_init.o swarm_devs.o

ALL : cfe cfe.flash
 echo done

include ${TOP}/main/cfe_link.mk

6.5 Special source files

Each port of CFE will need at least a few special source files for customization and board
initialization. These files generally live in the board support directory for your target board. For
example, the special source files for the CSWARM checkout board live in the
arch/mips/board/swarm/ directory.

If you want, you can also place these files in the build directory instead, should you wish to have
variants of a particular board that are very similar but differ in device configuration or
bsp_config.h options. If you do this, you can append special files to the BSPOBJS macro in the
Makefile that lives in the build directory. Since the current directory is first on the search path,
files in your build directory should override ones in the board-specific directory.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 82

File Purpose
Makefile Main makefile for your target. This file has certain build-time

options that cannot be placed in a source file.
bsp_config.h Most of CFE’s compile-time options are selected in this file.
board_init.S Your board’s low-level initialization code. This is called very early

in the startup sequence to give your code a chance to set up critical
hardware (for example, diagnostic LEDs)

board_devs.c Your board’s device startup file. Most other initialization happens
in this file. CFE will make calls to routines in this file at various
stages of initialization.

You can add as many additional source files as you need for your port and place those files in the
board support directory.

6.6 Configuration options

6.6.1 Required Makefile macros
Certain macros in the Makefile are required for building CFE. These settings are summarized in
the table below:

Option Description
TOP Set to the directory name of the “cfe” directory (that is, the directory

that contains “lib”, “arch”, and other top-level source directories).
For the default distribution, this should be set to “../cfe”

ARCH Should be set to “mips”
BOARD Should be set to the name of the directory under arch/mips/board

where your board-specific files live. For example, the SWARM
board sets this to swarm.

CPU Should be set to “sb1250”, the name of the directory under
arch/mips/cpu containing CPU-specific files.

Note that the BOARD macro is different from CFG_BOARDNAME. This is useful for subtle
variants of a board that has common board-specific files.

6.6.2 Options in the Makefile
Options in Makefile are things that affect the compiler and build procedure and cannot be placed
in a source file.

Option Description
CFG_MLONG64 Set to ‘1’ to build a 64-bit version of CFE, or ‘0’ to build a 32-bit

version.
CFG_LITTLE Set to ‘1’ to build a little-endian version of CFE, or ‘0’ to build a big-

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 83

endian version.
CFG_RELOC Set to ‘1’ to build a relocatable version of CFE. The relocatable

version will automatically move its code and data segments as high in
physical memory as is possible, depending on the amount of installed
DRAM. Since this can make debugging difficult, it is a good idea to
enable this later after your board is operational.

CFG_UNCACHED Set to ‘1’ to run CFE entirely uncached (from KSEG1). Generally
this is not advisable, but it may be useful in some debug
environments.

CFG_BOOTRAM Set to’1’ to run CFE from the boot ROM area, using the boot ROM
for RAM as well. This assumes you have connected a ROM
emulator that supports SRAM emulation or have actual SRAM in the
bootstrap location. Since most ROM emulators have some sort of
RAM emulation (provided you have attached the write line to your
target board) this can be useful for debugging your SDRAM
initialization routines.

CFG_VAPI Set to ‘1’ to configure the “verification API” – this is generally not
needed

CFG_BOARDNAME Sets the name of the board’s BSP.
CFG_PCI Set to ‘1’ to configure support for PCI devices.
CFG_VGACONSOLE Set to ‘1’ to configure support for VGA consoles
CFG_ZLIB Configure the decompression library, zlib. This enables booting of

compressed images via the –z switch to the boot and load commands.
CFG_RAMAPP Set to ‘1’ to build a version of CFE that runs like an application – it

does not initialize the CPU or memory controller and can be loaded
like any other application. This version is not suitable for putting in
ROM, but can be useful if you want to use CFE’s code like a library.

CFG_USB Set to ‘1’ to configure support for USB.
CFG_DOWNLOAD Set to ‘1’ to configure download support for PCI devices. On the

SENTOSA, this configures CFE to wait for an image to be sent to it
via the PCI connector.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 84

6.6.3 Options in the bsp_config.h file
Most configuration options can be placed in bsp_config.h. This file is included in many “C”
source files and assembly modules to trigger conditional compilation of features and options.

Option Description
CFG_INIT_L1 Set to ‘1’ to enable initialization of the L1 cache. It is best to

leave this set to ‘1’.
CFG_INIT_L2 Set to ‘1’ to enable initialization of the L2 cache. It is best to

leave this set to ‘1’
CFG_INIT_DRAM Set this to ‘1’ to initialize the DRAM controller. Unless you

have made other arrangements to initialize the DRAM from your
board_init module, this should be set to ‘1’.

CFG_NETWORK Set this to ‘1’ to include support for the network stack, including
network bootstrap.

CFG_TCP Set this to ‘1’ to include support for a simple TCP stack.
Normally, only UDP is supported.

CFG_UI Set this to ‘1’ to include the user interface. If you set this to ‘0’,
you need to launch the boot program yourself at the end of
CFE’s initialization.

CFG_UNIPROCESSOR_CPU0 For BCM1250 CPUs, start the processor in CPU0 mode,
effectively disabling CPU1 and making the part look more like a
BCM1125. You must also set CFG_MULTI_CPUS to zero for
this to work.

CFG_MULTI_CPUS Set this to ‘1’ to initialize secondary processor core(s). If you
leave this set to ‘0’, the secondary core(s) will be held in reset.

CFG_HEAP_SIZE Set this to the size of the heap in kilobytes. This memory will be
marked ‘in use’ by the firmware and will not be made available
to the operating system, so don’t overspecify it.

CFG_SERIAL_BAUD_RATE Sets the console speed (for serial ports). 115200 is the normal
default.

CFG_FATFS Set this to ‘1’ to include support for FAT file systems.
CFG_DRAM_INTERLEAVE Set this to ‘1’ to interleave chip selects 0..3 (128 byte

interleave). At present there is no way to do 64-byte interleave
with the DRAM initialization module

CFG_DRAM_ECC Set this to ‘1’ to enable ECC. The memory controller will be
initialized, all of physical memory will be zeroed, and ECC will
be enabled.

CFG_DRAM_SMBUS_CHANNEL Set this to the SMBus channel (0 or 1) where the serial presence
detect ROMs are wired for the memory channels. This is used
only if you are making use of the DRAM controller module’s
default initialization table.

CFG_DRAM_SMBUS_BASE Set this to the first SMBus address used for serial presence
detect modules. This is usually coded in the pullups and
pulldowns on the DIMM slots. It is assumed that the SPDs are

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 85

addressed in sequential order (see the comments in
sb1250_draminit.c for more info). This is used only if you are
making use of the DRAM controller module’s default
initialization table.

CFG_DRAM_BLOCK_SIZE Set this to 32, 64, or 128 to specify the amount of column
interleaving. This is used only if you are making use of the
DRAM controller module’s default initialization table. The
default is 32.

CFG_DRAM_CSINTERLEAVE Set this to 0, 1, or 2 to specify the number of bits of chip-select
interleaving. This is used only if you are making use of the
DRAM controller module’s default initialization table.

CFG_VENDOR_EXTENSIONS Set this to 1 to enable dispatching of vendor extended IOCBs.
CFG_MINIMAL_SIZE Set this to 1 to disable various debug features (examine/deposit

commands, disassembler, etc.), and turn off other features that
consume lots of memory (command line recall, etc.). This can
substantially reduce the minimum memory footprint of CFE.

6.6.4 Startup Routines

CFE makes several calls to routines in the board support package during initialization. The most
important calls are described in the following table:

Routine Description
board_earlyinit This routine is called extremely early in CFE’s startup. At that

time, there will be no DRAM, no cache, no TLB, and the
CPU/FPU registers will not be initialized yet. It will be called at
a KSEG1 address, so special care must be taken if this routine
calls any other routines. CFE is customarily linked to run at a
KSEG0 address, so a vanilla “jal” instruction will cause you to
execute in KSEG0 space before the cache is initialized. (see the
discussion in the next section)

This routine normally sets up the “generic bus” on the
BCM1250 to speed up access to the generic bus and to enable
the chip selects for the LEDs or other diagnostic peripherals, if
any.

board_draminfo Return the address of a DRAM information table, if needed.
This table is used to control the operation of sb1250_draminit.c
and lists the rows, columns, banks, and other information about
each DRAM module. To use the built-in table, which should be
sufficient for applications that use DIMM slots, return zero in
the v0 register. Otherwise, return the address of the table. CFE
will be running cached by this point, so it is safe to return a
cacheable (KSEG0) address. However, the initialized data

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 86

segment will not have been copied yet, so store the table in the
text segment and use a position-independent (not the la
instruction) means to get the address of the table. See
init_mips.S and the LOADREL macro for an example.

board_setleds This routine is called from many parts of CFE. If you have a
small LED display on your board, this routine will be called to
put characters on the LED. The A0 register will contain four
packed ASCII characters. This routine may be called from both
a KSEG0 or KSEG1 address, and is only permitted to use A0
and temporary registers T0..T3. If you don’t have an LED, just
return to the caller.

board_console_init This routine is called from “C”. Its main job is to add the
console device (using cfe_add_device), and then set the current
console to the device name that was added using
cfe_set_console. After this init routine completes, CFE will be
able to display messages on the console.

board_device_init This routine is called from “C”. Its job is to add all other
devices besides the console (using cfe_add_device). It will be
called after the PCI bus has been scanned, so device drivers that
rely on the PCI bus may be added here.

board_device_reset This routine is called when CFE is re-entered after an operating
system exits and attempts a “warm start.” It will be called just
before the device drivers’ dev_reset routines are called, to give
you a chance to turn off any dangerous I/O activity, like
background DMA that should not be running when the firmware
is idle.

board_final_init This is the final routine that will be called before CFE displays
the command prompt. If you are not using the user interface,
this is a good place to call the bootstrap routines to load the
operating system. If you are using the user interface, you can
add customized commands to the command table at this point.

6.6.5 Special caveats for board_earlyinit

All the startup routines except board_earlyinit may be implemented in “C”. The board_earlyinit
routine is called before the stack, memory controller, or caches are enabled. It is also called at a
KSEG1 address, but CFE is linked at a KSEG0 address.

Each time you want to call a subroutine inside your board_earlyinit routine, use the
CALLKSEG1 macro (you can find a definition of it in init_mips.S). This macro loads the
address of the target routine and manually sets the KSEG1 bits in the address to ensure that it
will be called in KSEG1, then jumps to the computed value.

6.6.6 Relocatable Code and Data

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 87

CFE can be built to relocate its code and data segments automatically to the highest point in
physical memory below the 256MB segment of 32-bit addressable space. This is very useful in
systems that have removable SDRAM DIMMs, since the total amount of memory may change.
Operating systems typically want to use the low physical addresses.

When you activate CFG_RELOC in Makefile, the compiler builds CFE in a manner similar to
the way shareable libraries are built. References to code and data in the firmware are embedded
in the text segment and CFE uses this information to apply “fixups” so that variables will point
to the proper places after CFE is moved to memory.

There a number of limitations to this scheme, the first of which is that you must be careful when
writing assembly language routines. Any “la” (load address) instruction involving a label will be
converted into an addition operation using the GP register. The relocation scheme is described
in the MIPS System V ABI specification.

6.7 DRAM Initialization on the BCM1250

6.7.1 DRAM Initialization Table
The code in sb1250_draminit.c takes most of the hard work out of initializing the DRAM
controller. Under normal circumstances, the built-in defaults can be used to obtain information
about the SDRAM DIMMs from the on-module serial-presence-detect (SPD) ROMs. For more
flexibility, it can be customized by writing a DRAM initialization table and supplying the address
of this table to the startup routines when the board_draminfo routine is called by the startup
code.

Note: The DRAM Initialization Table has changed significantly from previous versions of
CFE. In particular, it now supports a more general method of specifying DRAM options,
moving most of them into the table.

The table is composed of 12-byte records that are declared in sb1250_draminit.h. Several
records are required to make a complete table, and the order of the records are important for
proper initialization. The diagram below illustrates the ordering of records

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 88

Global Record

Channel Configuration Record

Chip Select Configuration

Chip Select Configuration

Channel Configuration Record

Chip Select Configuration

Chip Select Configuration

End of Table Record

Repeated for
each chip select

Repeated for
each chip select

Repeated for
each channel

Repeated for
each channel

The following record types are defined:

Record Purpose
DRAM_GLOBALS Declares global parameters that affect the entire memory

system. This should be the first record in the table.
DRAM_CHAN_CFG Selects a memory channel as the “current” memory channel

(for subsequent DRAM_CS_xxx records) and configures
parameters related to the memory channel

DRAM_CHAN_CLKCFG Overrides the default BCM1250 clock configuration values
to set the drive strengths and skew values for the memory
channel.

DRAM_CHAN_MANTIMING Overrides all automatic memory timing calculations for this
channel. The macro provides the value to be programmed
into the timing register.

DRAM_CS_SPD Selects a chip select for the current memory channel and
provides SMBus address information where draminit can
find the geometry and timing information for the memory
attached to this chip select. This is typically used if your
memory channel is populated with DIMMs.

DRAM_CS_GEOM Selects a chip select for the current memory channel and
provides the geometry information for the memory on that
channel. This is used when you have soldered-down
memory. Typically, the DRAM_CS_GEOM record is
followed by a DRAM_CS_TIMING record to specify the
timing parameters that would have been obtained from the
SPD on a DIMM.

DRAM_CS_TIMING Specifies the timing information for the current chip select
and the current memory channel. This macro provides the

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 89

information that would have been obtained from an SPD,
and is used in the case where SPDs are not available.

DRAM_EOT This must be the last record in the table.

The sb1250_draminit routine walks through this table to build an internal data structure that
represents the memory system, and in particular the relationships between memory controllers,
chip selects, and timing data. There is a “current” memory channel and chip select that is
maintained by the routine as it processes the records in the table.

The sections below detail the parameters for each record:

6.7.1.1 DRAM_GLOBALS(chintlv)

Specifies global parameters for the memory system. This should be the first record in the table.

Arg Value
chintlv Nonzero to enable channel interleaving. If this is nonzero, and the geometries

all the chip selects on the two memory channels are identical, channel
interleaving will be enabled.

6.7.1.2 DRAM_GLOBALS(chintlv)

Specifies global parameters for the memory system. This should be the first record in the table.

Arg Value
chintlv Nonzero to enable channel interleaving. If this is nonzero, and the geometries

all the chip selects on the two memory channels are identical, channel
interleaving will be enabled.

6.7.1.3 DRAM_CHAN_CFG(chan,tMEMCLK,dramtype,pagepolicy,blksize,csintlv,ecc,flg)

Selects a memory channel and configures basic parameters. This record should be the first in a
group of records for a specific memory controller channel.

Arg Value
chan Selects the memory channel number (0 or 1)
tMEMCLK Specifies the minimum value of tMEMCLK, the period of the memory clock.

This will set an upper bound on the memory system frequency. This value
should be specified in using the DRT10(units,tenths) macro – for example, to
limit the memory system to 125Mhz, set tMEMCLK to DRT10(8,0) for an 8

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 90

nanosecond minimum clock.
dramtype Selects the type of memory attached to this memory channel. Possible values

are JEDEC, SGRAM, and FCRAM. JEDEC memory is the value for normal
DDR SDRAMs.

pagepolicy Specifies the page policy to be used for open memory pages. Refer to the
BCM1250 manual for the details of each policy. The policy values you can
provide here are CLOSED, CASCHECK, HINT, and OPEN.

blksize Specifies the block size (column interleaving) for this channel – the number
of column bits that will appear at the bottom of the address before the bank
address bits are introduced. Supported values are 32, 64, and 128 for 0, 1, and
2 bits of column interleaving respectively.

csintlv Specifies the number of bits of chip select interleaving. Possible values or 0,
1, or 2. Zero disables chip select interleaving. Note that when you use only
one bit of chip select interleaving, the memory controller will be configured
for mixed-CS mode.

ecc Set to a nonzero value to enable ECC on this memory controller. If ECC is
enabled, draminit will zero all of system memory before it returns to CFE.

flg A bit mask of miscellaneous flags. Supported flags are MCFLG_BIGMEM
to enable “large-memory” support (the external decode feature in the 1250’s
memory controller) and MCFLG_FORCEREG to force draminit to include
the extra cycle for an external register, even if the SPD on the DIMM reports
as an unbuffered device. For large memory systems, both of these are usually
specified together, since large memory systems will often need an external
register to drive the extra memory devices.

There is also another version of this macro:

DRAM_CHAN_CFG2(chan,tMEMCLK,tROUNDTRIP,dramtype,pagepolicy,blksize,csintlv,ecc,fl
g)

Arg Value
tROUNDTRIP Specifies the round trip time of the memory system, in tenths of nanoseconds

(use the DRT10 macro as you would for tMEMCLK, shown above).
tROUNDTRIP is the round-trip time from the pins on the processor to the
memory and back. The default value for this is 2ns.

You should specify either a DRAM_CHAN_CFG or DRAM_CHAN_CFG2 but not both.

6.7.1.4 DRAM_CHAN_CLKCFG(addrskew,dqoskew,dqiskew,addrdrive,datadrive,clkdrive)

Specifies the clock configuration value for the currently selected memory controller. If this
record is absent, a default value will be used. The clock configuration parameters you can
specify here are all of the drive and skew controls for the memory channel. These values are
copied directly into the BCM1250’s registers, so refer to the manual for more detailed
information on the values you should choose here.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 91

Arg Value
addrskew Address skew value (see the BCM1250 manual)
dqoskew DQO skew value (see the BCM1250 manual)
dqiskew DQI skew value (see the BCM1250 manual)
addrdrive Address drive value and class (see the BCM1250 manual)
datadrive Data drive value and class (see the BCM1250 manual)
clkdrive Clock drive value and class (see the BCM1250 manual)

6.7.1.5 DRAM_CHAN_MANTIMING(tCK,rfsh,tval)

Overrides the timing value for the current memory channel. If you want draminit to skip all
calculations of timing parameters and load a specific value into the 1250’s memory timing
registers, use this record.

Arg Value
tCK Configures the memory clock. Enter a BCD value using the

DRT10(units,tenths) macro.
rfsh Configures the refresh rate. Use a JEDEC refresh value (JEDEC_RFSH_xxx

constants).
tval The 64-bit value to be written to the MC_TIMING1 register in the memory

controller. See the BCM1250 user’s manual for details on the register’s
format.

6.7.1.6 DRAM_CS_SPD(csel,flags,chan,dev)

Selects a chip select on the current memory channel and configures the SMBus information for
the SPD that contains timing and geometry information. If the DIMM reports as a double-sided
device (two chip selects) it is assumed that the ‘odd’ chip select is also present. Therefore, it is
only necessary to use DRAM_CS_SPD records for CS0 and CS2 in systems with two DIMM
slots per channel, since a double sided DIMM installed in slot 0 will consume both CS0 and
CS1.

Arg Value
csel Chip select number (0,1,2,3)
flags not currently used. Specify 0
chan SMBus channel number where SPD can be found (0,1)
dev SMBus device where SPD can be found. SMBus device numbers are 7 bits

long – typical values used by the SPDs on DIMMs range from 0x50 through
0x57.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 92

6.7.1.7 DRAM_CS_GEOM(csel,rows,cols,banks)

Selects a chip select on the current memory channel and configures the geometry of the devices
connected to the chip select. This record is usually followed by a DRAM_CS_TIMING record
to specify timing information.

Arg Value
csel Chip select number (0,1,2,3)
rows Number of row bits
cols Number of column bits
banks Number of bank bits (note: not number of banks!)

6.7.1.8 DRAM_CS_TIMING(tCK,rfsh,caslatency,attributes,tRAS,tRP,tRRD,tRCD,tRFC,tRC)

Selects a chip select on the current memory channel and configures the timing for the devices on
this channel. These values are essentially the values from the datasheet, converted into a format
similar to those usually provided in an SPD ROM on a DIMM. Refer to sb1250_draminit.h for
the values of constants that can be used for the encoded values.

Arg Units Value
tCK ns (DRT10) The tCK (memory clock speed)
rfsh JEDEC_RFSH_xxx Refresh rate (encoded)
caslatency JEDEC_CASLAT_xxx CAS latency value (bitmask)
attributes JEDEC_ATTRIB_xxx Attribute bits (usually zero)
tRAS ns tRAS – time from ACTIVE to PRECHARGE

command
tRP ns (DRT4) tRP – PRECHARGE command period
tRRD ns (DRT4) tRRD – ACTIVE bank “A” to ACTIVE bank “B”

command time
tRCD ns (DRT4) tRCD – ACTIVE to READ or WRITE delay
tRFC ns tRFC – auto refresh command period. If left zero, this

can be calculated automatically from the other
parameters.

tRC ns tRC. – ACTIVE to ACTIVE/AUTOREFRESH
comamnd period. If left zero, this can be calculated
automatically from the other parameters.

The ‘units’ field specifies the format that the timing parameters should be entered with. DRT10
is a BCD format, with the upper 4 bits used for the units and the lower 4 bits used for the tenths.
DRT4 is a fixed-point format, with the upper 6 bits for the units and the lower 2 bits used for the
“quarters.” Examples:

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 93

DRT10(8,0) = 8.0
DRT10(7,5) = 7.5
DRT4(19,75) = 19.75
DRT4(20,0) = 20.0

Be sure to use the correct units for the parameters in the above table, or the memory initialization
will not work properly.

6.7.2 Sample draminit tables
This section contains some sample tables for the sb1250_draminit routine.

6.7.2.1 SWARM board

The SWARM evaluation board has DIMM slots, so we can get the DIMM geometry and timing
information from the SPD ROMs

 /*
 * Global data: Interleave mode from bsp_config.h
 */

 DRAM_GLOBALS(CFG_DRAM_INTERLEAVE), /* do port interleaving if possible */

 /*
 * Memory channel 0: Configure via SMBUS, Automatic Timing
 * Assumes SMBus device numbers are arranged such
 * that the first two addresses are CS0,1 and CS2,3 on MC0
 * and the second two addresses are CS0,1 and CS2,3 on MC1
 */

 DRAM_CHAN_CFG(MC_CHAN0, CFG_DRAM_MIN_tMEMCLK, JEDEC,

CASCHECK, CFG_DRAM_BLOCK_SIZE, NOCSINTLV, CFG_DRAM_ECC, 0),

 DRAM_CS_SPD(MC_CS0, 0, DEFCHAN, DEVADDR+0),
 DRAM_CS_SPD(MC_CS2, 0, DEFCHAN, DEVADDR+1),

 /*
 * Memory channel 1: Configure via SMBUS
 */

 DRAM_CHAN_CFG(MC_CHAN1, CFG_DRAM_MIN_tMEMCLK, JEDEC,

CASCHECK, CFG_DRAM_BLOCK_SIZE, NOCSINTLV, CFG_DRAM_ECC, 0),

 DRAM_CS_SPD(MC_CS0, 0, DEFCHAN, DEVADDR+2),
 DRAM_CS_SPD(MC_CS2, 0, DEFCHAN, DEVADDR+3),

 /*
 * End of Table
 */

 DRAM_EOT

6.7.2.2 SENTOSA board

The SENTOSA evaluation board has soldered-down memory, so the memory geometries and
timing parameters must be specified manually.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 94

 /*
 * DRAM globals: interleave OK
 */

 DRAM_GLOBALS(CFG_DRAM_INTERLEAVE)

 /*
 * 128MB on MC 0 (JEDEC SDRAM)
 * Samsung K4H561638B - 16Mx16 chips
 *
 * Minimum tMEMCLK: 8.0ns (125Mhz max freq)
 *
 * CS0 Geometry: 13 rows, 9 columns, 2 bankbits
 *
 * 64khz refresh, CAS Latency 2.5
 * Timing (ns): tCK=7.50 tRAS=45 tRP=20.00 tRRD=15.0 tRCD=20.0 tRFC=auto tRC=auto
 *
 * Clock Config: Default
 */

 DRAM_CHAN_CFG(MC_CHAN0, DRT10(8,0), JEDEC, CASCHECK, BLKSIZE32,

CFG_DRAM_CSINTERLEAVE, CFG_DRAM_ECC, 0)
 DRAM_CS_GEOM(MC_CS0, 13, 9, 2)
 DRAM_CS_TIMING(DRT10(7,5), JEDEC_RFSH_64khz, JEDEC_CASLAT_25,

0, 45, DRT4(20,0), DRT4(15,0), DRT4(20,0), 0, 0)

 /*
 * 128MB on MC 1 (JEDEC SDRAM)
 * Samsung K4H561638B - 16Mx16 chips
 *
 * Minimum tMEMCLK: 8.0ns (125Mhz max freq)
 *
 * CS0 Geometry: 13 rows, 9 columns, 2 bankbits
 *
 * 64khz refresh, CAS Latency 2.5
 * Timing (ns): tCK=7.50 tRAS=45 tRP=20.00 tRRD=15.0 tRCD=20.0 tRFC=auto tRC=auto
 *
 * Clock Config: Default
 */

 DRAM_CHAN_CFG(MC_CHAN1, DRT10(8,0), JEDEC, CASCHECK, BLKSIZE32,

 CFG_DRAM_CSINTERLEAVE, CFG_DRAM_ECC, 0)
 DRAM_CS_GEOM(MC_CS0, 13, 9, 2)
 DRAM_CS_TIMING(DRT10(7,5), JEDEC_RFSH_64khz, JEDEC_CASLAT_25,

 0, 45, DRT4(20,0), DRT4(15,0), DRT4(20,0), 0, 0)

 DRAM_EOT

6.7.2.3 Large Memory (external decode mode)

This is an example table for a board with eight DIMM slots, using the “external decode” feature
of the BCM1250’s memory controller.

 /*
 * Global data: Interleave mode from bsp_config.h
 */

 DRAM_GLOBALS(CFG_DRAM_INTERLEAVE) /* do port interleaving if possible */

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 95

 /*
 * Memory channel 0: Configure via SMBUS, Automatic Timing, Big Memory mode, Force Register
 *
 * There's an external register on the board, so dimms appear to be "registered" even though
 * the SPD says they're not.
 *
 * SPD SMBus Channel 0 Device 0x50 -> MC0 slot 0 ___ MC0 CS0 via external decode
 * SPD SMBus Channel 0 Device 0x51 -> MC0 slot 1 /
 * SPD SMBus Channel 0 Device 0x52 -> MC0 slot 2 ___ MC0 CS1 via external decode
 * SPD SMBus Channel 0 Device 0x53 -> MC0 slot 3 /
 *
 * DRAM must always be added in pairs!
 */

 DRAM_CHAN_CFG(MC_CHAN0, CFG_DRAM_MIN_tMEMCLK, JEDEC, CASCHECK,

 CFG_DRAM_BLOCK_SIZE, NOCSINTLV, CFG_DRAM_ECC, (MCFLG_BIGMEM | MCFLG_FORCEREG))

 DRAM_CS_SPD(MC_CS0, 0, 0, 0x50)
 DRAM_CS_SPD(MC_CS1, 0, 0, 0x52)

 /*
 * Memory channel 1: Configure via SMBUS, Automatic Timing, Big Memory mode, Force Register
 *
 * There's an external register on the board, so dimms appear to be "registered" even though
 * the SPD says they're not.
 *
 * SPD SMBus Channel 0 Device 0x54 -> MC1 slot 0 ___ MC1 CS0 via external decode
 * SPD SMBus Channel 0 Device 0x55 -> MC1 slot 1 /
 * SPD SMBus Channel 0 Device 0x56 -> MC1 slot 2 ___ MC1 CS1 via external decode
 * SPD SMBus Channel 0 Device 0x57 -> MC1 slot 3 /
 *
 * DRAM must always be added in pairs!
 */

 DRAM_CHAN_CFG(MC_CHAN1, CFG_DRAM_MIN_tMEMCLK, JEDEC, CASCHECK,

 CFG_DRAM_BLOCK_SIZE, NOCSINTLV, CFG_DRAM_ECC, (MCFLG_BIGMEM | MCFLG_FORCEREG))

 DRAM_CS_SPD(MC_CS0, 0, 0, 0x54)
 DRAM_CS_SPD(MC_CS1, 0, 0, 0x56)

 /*
 * End of Table
 */

 DRAM_EOT

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 96

6.8 LED messages

One of the earliest I/O operations in CFE’s startup is to initialize access to an external LED
display, if you have one. Display units similar to HP/Agilent’s DL-2416 are easy to attach to the
BCM1250’s generic bus and can provide valuable information during bringup. If you have an
LED configured, the following messages are displayed during startup:

Message Meaning
HELO Very first message displayed by the firmware. This is message is displayed

just after your board_earlyinit routine returns.
L1CI Displayed just before L1 cache initialization.
L2CI Displayed just before L2 cache initialization.
DRAM Displayed just before DRAM controller initialization
RAMX Fatal error. Displayed if there is no RAM in the system.
ZBSS Displayed just before CFE zeroes the BSS region.
DATA Displayed just before copying the initialized data segment from flash to

DRAM
RELO Displayed just before performing fixups on the data segment (relocatable

version only)
L12F Displayed just before flushing the caches after code relocation.
MAIN Displayed just before jumping to “C” code
cpui Displayed just before starting the secondary CPU
cpu1 Displayed by CPU1 just before it enters its idle loop
KMEM Displayed just before CFE initializes its heap
CONS Displayed just before attaching the console device
CIOK Displayed just before displaying copyright notice
AREN Displayed just before initializing the arena (physical memory map)
PCIH Displayed just before initializing the PCI host bridge.
PCIS Displayed just before scanning PCI configuration space for devices
PCIR Displayed just before reconfiguring the PCI devices based on information

gathered from the scan
PCIW Displayed just before assigning PCI resources (I/O, memory windows)
PCID Displayed just before activating PCI devices with assigned resources
vgai Displayed while running the X86 VGA BIOS (if configured)
DEVI Displayed just before initializing the rest of the devices
ENVI Displayed just before reading the environment from the NVRAM device
CFE Displayed at completion of all initialization. CFE is now at the command

prompt.
EXC! Error. Displayed if an exception occurs.
RUN! Displayed just before CFE launches a program.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 97

If you do not have an LED display in your system, and you can monitor the generic bus with a
logic analyzer, you can write a routine in your board_init.S file to write the LED value (in the A0
register) to some address that you can monitor externally.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 98

7. Device Drivers

7.1 Device driver structure

Device drivers in CFE are extremely simple. They are not meant to provide a high-performance
data path, and they generally do not expose all of a device’s features or functions. They provide
the minimal support necessary to read and write data from a device in such a way that an
operating system or bootstrap program can be loaded, and status can be communicated to the
user. In particular, CFE’s drivers are entirely polled, since CFE has no interrupt dispatcher and
never enables interrupts.

Device drivers are simple “C” routines that are linked into the firmware at build time. They all
share a few common data structures:

7.1.1 Device Descriptor

Device drivers are managed by CFE’s device manager, which simply keeps a list of device
drivers and their names for applications to use. A device driver is declared by creating a
cfe_driver_t structure:

typedef struct cfe_driver_s {
 char *drv_description;
 char *drv_bootname;
 int drv_class;
 const cfe_devdisp_t *drv_dispatch;
 void (*drv_probe)(. . .);
} cfe_driver_t;

The fields in this structure describe the device and declare its entry points. The fields are:

Field Description
drv_description Full name of the device, for display purposes
drv_bootname Device name prefix (without a unit number suffix, such as “uart”)
drv_class Type of device (see below)
drv_dispatch Pointer to dispatch table to device’s access methods
drv_probe Probe routine, which eventually calls cfe_add_device to

instantiate the device.

7.1.2 Device Classes

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 99

The following device classes are defined. The device class should be filled into the drv_class
field:

Class Description
CFE_DEV_NETWORK Network device, such as an Ethernet controller
CFE_DEV_DISK Disk (or other random-access block-structured device)
CFE_DEV_FLASH Flash memory device, for boot ROMs
CFE_DEV_SERIAL Serial port devices or other character-oriented devices that are

suitable for use as consoles
CFE_DEV_CPU CPUs (not used)
CFE_DEV_NVRAM NVRAMs such as EEPROMs that can be used to store the

environment
CFE_DEV_CLOCK Real-time (time of year) clock devices
CFE_DEV_OTHER Any other devices that do not fit into the above categories

7.1.3 Function Dispatch

Each device driver supplies a function dispatch table in the form of a cfe_devdisp_t structure.
This structure is defined as:

struct cfe_devdisp_s {
 int (*dev_open)(cfe_devctx_t *ctx);
 int (*dev_read)(cfe_devctx_t *ctx,iocb_buffer_t *buffer);
 int (*dev_inpstat)(cfe_devctx_t *ctx,iocb_inpstat_t *inpstat);
 int (*dev_write)(cfe_devctx_t *ctx,iocb_buffer_t *buffer);
 int (*dev_ioctl)(cfe_devctx_t *ctx,iocb_buffer_t *buffer);
 int (*dev_close)(cfe_devctx_t *ctx);
 void (*dev_poll)(cfe_devctx_t *ctx,int64_t ticks);
 void (*dev_reset)(void *softc);
};

The functions in this dispatch table correspond to the CFE functions exported by the external
API. All of the functions are required except dev_poll and dev_reset which may be null if you
do not need them. The dev_reset routine’s parameter list differs from the others since it will be
called on a warm restart when the device is not yet open.

7.1.4 The Probe routine

The probe routine is called during startup to add a device to the system. It is passed three generic
parameters: probe_a, probe_b, and probe_ptr. The purpose of these parameters is completely
unspecified; the probe routine can use it for any purpose that it wants. Generally these
parameters are used to communicate the device’s bus address or other information that is specific
to the target. In the target’s board_device_init routine, there will be one or more calls to
cfe_add_device, as in the following example:

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 100

 cfe_add_device(&flashdrv,BOOTROM_PHYS,BOOTROM_SIZE*K64,NULL);
 cfe_add_device(&flashdrv,ALT_BOOTROM_PHYS,ALT_BOOTROM_SIZE*K64,NULL);

The second, third, and fourth arguments to cfe_add_device will be passed to the probe routine as
probe_a, probe_b, and probe_ptr. In this example, probe_a is being used to pass the physical
address of a flash ROM area, and probe_b is being used to pass the size of the flash ROM.
Probe_ptr is not used.

The probe routine can verify that the device is present in the system and call cfe_attach to install
the device in CFE’s device list. The cfe_attach routine is declared as:

 void cfe_attach(cfe_driver_t *devname,void *softc,
 char *bootinfo,char *description);

The devname parameter is the cfe_driver_t structure passed to the probe routine. The softc
parameter is your “soft context” data structure, which is generally allocated from the heap via
KMALLOC and contains any information you wish to store about the device, such as its current
state, device register addresses, etc. The bootinfo parameter is the suffix to add to the device’s
full name. Generally it is a “dotted decimal” sequence of numbers like “1.2” which will be
appended to the device name string. If you are installing “mydevice0” and you pass a bootinfo
string of “1.2”, the device’s full name will be “mydevice0.1.2” Finally, the description
parameter is a verbose description of the device (it can be displayed by the user interface). CFE
will make a copy of this string for you, so it is not necessary to declare it in your softc structure.

7.2 Adding a new device driver

It is easiest to start with one of the existing device drivers, such as the serial driver
(dev_sb1250_uart.c).

Decide what your probe routine’s arguments will be, and in your probe routine allocate space for
a private data structure to hold this data and anything else you need to keep track of the current
state of the device.

When writing the I/O routines, try to avoid doing any device-specific setup in the probe routine.
(you can allocate memory and calculate I/O register offsets and values, but avoid actually writing
the values to the I/O registers). Move these accesses to the open routine to minimize the
possibility of bad hardware causing the firmware to hang, and to increase the likelihood that a
warm restart will work when an OS exits.

Call the cfe_attach routine to create the device. If you want, you can call cfe_attach multiple
times to create additional instances of the device.

In your Makefile, add the object file name of your new device driver to the BSPOBJS list.

In your board_device_init routine, add a call to cfe_add_device, passing any necessary
addressing information in the probe_a, probe_b, and probe_ptr arguments.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 101

7.3 Device driver probe arguments for supplied devices

The device drivers included in the base CFE distribution pass the following data in their probe
arguments:

Device probe_a probe_b probe_ptr
null unused unused unused
flash Physical address of

the base of the flash
memory

Total size of the flash
memory

if non-NULL, points
at a flash_info_t,
which describes
advanced flash
options.

ide Physical address of
the base of the IDE
drive’s registers

Unit number (0 or 1)
and flags

unused

jtag Physical address of
JTAG communication
area

unused unused

pcconsole unused unused unused
promice Physical address of

the AI2 interface on
the PromICE

Word size (1,2 or 4
bytes). ‘1’ is normal.

unused

eth Ethernet controller’s
physical base address

unused String pointer to
hardware address in
the form
“xx:xx:xx:xx:xx:xx”

24lc128eeprom SMBus channel
number (0 or 1)

SMBus device
address

unused

x1240eeprom SMBus channel
number (0 or 1)

unused (SMBus
device address is
fixed)

unused

uart DUART’s base phys
address

Channel number
within the DUART (0
or 1)

unused

ns16550 Physical address of
the base of the
NS16550’s registers.

unused unused

ns16550_pci unused unused unused

7.4 Device driver functions

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 102

The sections below describe the routines that your device driver implements to perform I/O for
the firmware. Pointers to these routines are placed in the cfe_devdisp_s structure.

Most of the device driver functions are passed a pointer to the device context in the cfe_devctx_t
structure. This structure maintains information needed for the device while it is open. You can
retrieve the pointer to the softc structure that you created in the probe routine by referencing the
ctx->dev_softc member of the cfe_devctx_t structure.

With the exception of dev_poll and dev_reset, all device functions should return zero if
successful, or an error code from include/cfe_error.h.

7.4.1 The dev_open routine
The dev_open routine is called when an application uses the CFE_DEV_OPEN firmware API
call. In general, your routine should initialize the device and prepare it for I/O operations. For
example, a serial device driver will enable the port, set the modem control signals to indicate
data transfer is OK, configure the baud rate, etc.

7.4.2 The dev_read routine
The dev_read routine is used to transfer data from the device. It is called from the device
manager when an application uses the CFE_DEV_READ firmware API call. The destination for
the transferred data is described in the iocb_buffer_t argument. The fields are used as follows:

field Description
buf_ptr Points to the user buffer to receive the data from the device
buf_length Contains the size of the user’s buffer, in bytes
buf_offset For block devices such as disks, contains the byte offset

within the device where the transfer will begin.

The dev_read routine is non-blocking. If there is insufficient data from the device to transfer all
requested bytes, the data that is available is read and the function returns. Higher-level routines
will repeat the dev_read call until all the requested data is read. On return, dev_read will fill in
the iocb_buffer_t fields as follows:

field Description
buf_retlen Contains the actual number of bytes of data that were read

(zero means no data is available to read)

7.4.3 The dev_inpstat routine

The dev_inpstat routine is used to test the status of an input device. It is called from the device
manager when an application uses the CFE_DEV_INPSTAT firmware API call. In the case of a

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 103

console, dev_inpstat will return an indication that there are characters available to be read by the
dev_read routine. The status is returned in the iocb_inpstat_t structure as follows:

field Description
inp_status Contains zero if no bytes are available to be read, or one if

one or more bytes are available to be read.

7.4.4 The dev_write routine
The dev_write routine is used to transfer data to the device. It is called from the device manager
when an application uses the CFE_DEV_WRITE firmware API call. The source for the
transferred data is described in the iocb_buffer_t argument. The fields are used as follows:

field Description
buf_ptr Points to the user buffer containing data to be sent to the

device
buf_length Contains the number of bytes of data to send to the device
buf_offset For block devices such as disks, contains the byte offset

within the device where the transfer will begin.

The dev_write routine is non-blocking. If there is insufficient buffer space in the device to
transfer all requested bytes, the data that can be transferred will be transferred and the function
returns. Higher-level routines will repeat the dev_write call until all the requested data is written.
On return, dev_write will fill in the iocb_buffer_t fields as follows:

field Description
buf_retlen Contains the actual number of bytes of data that were written

(zero will indicate that the device is blocked – in the case of a
serial port, for example, zero would be returned if the FIFO
was full)

7.4.5 The dev_ioctl routine
The dev_ioctl routine is used to provide device-specific API calls. The exact functions of the
dev_ioctl routine are up to you, but certain classes of devices have some standardized IOCTL
functions. See section 7.5.5.2 for details on the standard IOCTL functions.

The dev_ioctl function’s parameters are passed in the iocb_buffer_t structure. The fields are as
follows:

field Description
buf_ioctlcmd Contains a code number to specify which IOCTL function is

being requested. Standard IOCTL codes are defined in

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 104

include/cfe_ioctl.h.
buf_ptr Points to a user buffer. If not used, this field should be

NULL.
buf_length Contains the length of the user’s buffer.
buf_retlen May be used by the IOCTL routine to return the number of

bytes transferred.
buf_offset May be used by the IOCTL routine to pass additional

parameters.

If your device driver does not support a particular IOCTL routine, you should return an error
code.

Be careful to avoid problems with 32/64-bit issues when writing an IOCTL handler. For
example, if you are passing a structure in the buf_ptr field and this structure does not have the
same layout on 32-bit and 64-bit versions of CFE, applications will pass incorrect data if the
firmware is not compiled with the same memory model as the application.

7.4.6 The dev_close routine
The dev_close routine is called from the device manager when an application uses the
CFE_DEV_READ firmware API call. Your device driver should stop any pending I/O, disable
the device, and release any resources associated with the device. Note that the softc structure is
not freed – it was allocated in the probe routine and remains in memory at all times.

7.4.7 The dev_poll routine
Some devices require periodic polling to avoid missing data or perform other background tasks.
If you declare a pointer to a dev_poll routine, it will be called when your driver is open each time
CFE goes through its polling loop. When your driver is not open, the dev_poll routine is not
called. The dev_poll routine is optional; if you do not intend to use it, you can leave its entry
point as NULL.

7.4.8 The dev_reset routine

The dev_reset routine is called when the firmware does a “warm start.” It gives your driver a
chance to undo any potentially dangerous device settings that an application or operating system
may have done while it was running. Because the dev_poll routine is not called when the device
is open, the dispatcher will not have created the cfe_devctx_t structure. Therefore, dev_reset is
passed your softc pointer (to the data allocated in your probe routine). The dev_reset routine is
not called on a cold start.

7.5 Standard device IOCTLs and read/write behavior

Certain classes of device drivers respond to common sets of IOCTL functions (for example,
Ethernet devices have IOCTLs to obtain the Ethernet hardware address). The following sections
describe the read/write behavior and the standard IOCTL functions for each class of device.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 105

Constants and data structures related to the IOCTL commands can be found in
include/cfe_ioctl.h.

7.5.1 Ethernet Devices

7.5.1.1 Read/Write behavior

Ethernet devices are record-oriented sequential devices. The read and write calls receive and
transmit packets. If there are no packets available when a read call is issued, the driver returns
zero indicating that no packets are available. When a packet is received, the buffer for the read
call must be large enough to hold the packet (any portion that does not fit in the buffer will be
dropped).

7.5.1.2 Standard IOCTLs

IOCTL Code Parameter

Data
Description

IOCTL_ETHER_GETHWADDR 6 bytes Return the hardware address assigned to the
interface.

IOCTL_ETHER_SETHWADDR 6 bytes Set the hardware address for this interface.
The buffer points to 6 bytes containing the
address

IOCTL_ETHER_GETSPEED int Return the configured link speed
(ETHER_SPEED_xxx)

IOCTL_ETHER_SETSPEED int Manually set the link speed
(ETHER_SPEED_xxx)

IOCTL_ETHER_GETLINK int Return the current link status and speed
(ETHER_SPEED_xxx)

IOCTL_ETHER_GETLOOPBACK int Return the current loopback mode setting
(ETHER_LOOPBACK_xxx)

IOCTL_ETHER_SETLOOPBACK int Set the interface’s loopback status
(ETHER_LOOPBACK_xxx)

7.5.2 Flash Memory Devices

7.5.2.1 Read/Write behavior

Flash memory devices are random-access storage devices. The read and write calls make use of
the buf_offset field of the buffer structure to specify the starting offset for data transfers.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 106

7.5.2.2 Standard IOCTLs

IOCTL Code Parameter

Data
Description

IOCTL_NVRAM_GETINFO nvram_info Return data describing which portion of the
flash may be used as an NVRAM device

IOCTL_NVRAM_ERASE none Erase the NVRAM area of the flash
IOCTL_FLASH_ERASE_SECTOR offset Erase the sector at the offset specified in the

buffer descriptor’s buf_offset field.
IOCTL_FLASH_ERASE_ALL none Erase the entire flash device
IOCTL_FLASH_WRITE_ALL buffer,length Relocate a programming routine to RAM,

then erase and write the entire device using
the buffer pointer and length supplied in the
descriptor.

IOCTL_FLASH_GETINFO flash_info Return information about the flash in the
flash_info_t structure. In particular, the
flash_type field returns whether the device is
actually a flash device. This IOCTL attempts
to distinguish among flash, SRAM, and
ROMs.

IOCTL_FLASH_GETSECTORS flash_sector Return information about a flash sector. The
sector’s index is filled into flash_sector_idx in
the flash_sector_t structure. The sector’s size
and offset are returned, or else the
flash_sector_status field returns an error
code.

IOCTL_FLASH_UNLOCK none “unlocks” the NVRAM area of the flash,
making it possible to write data beyond the
reported end of the flash device. The
environment manager uses this to write the
NVRAM sector (usually the last sector in the
flash).

7.5.3 EEPROM Devices

7.5.3.1 Read/Write behavior

Flash memory devices are random-access devices. The read and write calls make use of the
buf_offset field of the buffer structure to specify the starting offset for data transfers.

7.5.3.2 Standard IOCTLs

IOCTL Code Parameter Description

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 107

Data
IOCTL_NVRAM_GETINFO nvram_info Return data describing which portion of the

flash may be used as an NVRAM device
IOCTL_NVRAM_ERASE none Erase the NVRAM area of the flash

7.5.4 Serial Devices

7.5.4.1 Read/Write behavior

Serial ports are sequential, byte-stream devices. The read and write calls receive and transmit
data. If no data is available to be received, the read call returns zero.

7.5.4.2 Standard IOCTLs

IOCTL Code Parameter

Data
Description

IOCTL_SERIAL_SETSPEED int Set the serial port’s speed (in bits/second)
IOCTL_SERIAL_GETSPEED int Return the serial port’s speed
IOCTL_SERIAL_SETFLOW int Set the flow control mode

(SERIAL_FLOW_xxx)
IOCTL_SERIAL_GETFLOW int Return the current flow control mode

(SERIAL_FLOW_xxx)

7.5.5 Disk Devices

7.5.5.1 Read/Write behavior

Disks are random-access storage devices. The read and write calls make use of the buf_offset
field of the buffer structure to specify the starting offset for data transfers. The device driver is
responsible for handling the case where the offset is not aligned on a sector boundary.

7.5.5.2 Standard IOCTLs

IOCTL Code Parameter

Data
Description

IOCTL_BLOCK_GETBLOCKSIZE int Return the size of each block (sector) on the
device

IOCTL_BLOCK_GETTOTALBLOCKS long long Return the total number of blocks on the

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 108

device
IOCTL_BLOCK_GETDEVTYPE blockdev_in

fo
Return information describing the block
device in a blockdev_info_t structure.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 109

8. Firmware API and Boot Environment

The firmware API is used by operating systems and loaders to communicate with the bootstrap
device, obtain environment variables, and request information about the system. CFE uses a
simple control-block style API, where the address of a parameter block is passed to the firmware
for all operations.

8.1 Entry point

The entry point is located in the ROM, with an entry vector of 0xBFC00500 (uncached) or
0x9FC00500 (cached). The entry point has the following structure:

Address (cached) Address (uncached) Contents
0x9FC00500 0xBFC00500 Branch to entry point
0x9FC00504 0xBFC00504 NOP for branch delay slot
0x9FC004E0 0xBFC004E0 Entry point seal (0x43464531)
0x9FC004E4 0xBFC004E4 Entry point seal (0x43464531)

Software should check for the presence of the seal before calling the entry point. Most software
can call the cached entry point, since CFE will have initialized the cache. If you have built CFE
to run entirely uncached, then programs loaded via CFE should not use the cache, and those
programs should call the uncached entry point.

When calling CFE, the following parameters are passed in registers:

Register Value
A0 Firmware Handle (see below)
A1 Pointer to IO control block (cfe_xiocb_t structure pointer)

Results (status) are returned in the V0 register. The firmware will save the S0..S7 registers, but
may use the temporary registers for itself.

The firmware handle value (passed in A0) is the value that was passed to the application when it
was launched by CFE. This value is the pointer to CFE’s data segment, which cannot be
automatically determined in an implementation-independent way. CFE normally relocates its
data segment to the top of physical memory to avoid conflicts with OS boot loaders and other
software. It is the application’s responsibility to remember the handle passed by the firmware
and pass it back to CFE when making API calls.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 110

The I/O Control Block (IOCB) pointer is the address of a data structure that describes the
firmware request. The IOCB structure is divided into two parts, a fixed portion and a parameter
list. The contents of the parameter list depend on the function number. The sections that follow
describe each IOCB call.

8.2 Boot Environment

8.2.1 Virtual Address Space

CFE creates a special environment for boot loaders to help them avoid writing on the memory
they will be loading the operating system into. It is assumed that the OS will load into KSEG0
and begin operation there, and once running it will create page tables and establish a TLB
handler.

CFE includes a simple TLB handler and a page table for the following address:

Virtual Address Size Physical Address
0x20000000 256KB Calculated; near the top of physical memory but within

the first 256MB

The page table is linear mapping to the physical address. By locating the physical memory near
the top of the available address range, an OS kernel can safely be loaded (presumably the kernel
is smaller than physical memory and does not know how large the memory is, so it will be
loaded at the bottom of the address space).

When loading “raw” (i.e., not ELF format) binary files, CFE will always load them to
0x20000000 and begin execution at that location. If you load ELF files, CFE will follow the
load instructions in the program header. It will reject any ELF binary that tries to load data that
conflicts with CFE or areas of memory that do not exist or lie outside the boot environment (in
other words, you can load ELF files which are loaded to run at 0x20000000).

As long as the CP0 “BEV” (boot exception vector) bit is set, CFE will be able to service TLB
exceptions for the boot area. Once control is transferred to the kernel, do not depend on the
presence of the boot environment.

8.2.2 Environment Variables
CFE sets up a number of environment variables for use by the boot loader and the operating
system. They are summarized in the table below:

Variable Value
BOOT_DEVICE The full name of the device containing the boot file
BOOT_FILE The name of the file read from the boot device, if any
BOOT_FLAGS Any command-line switches or options specified along with the file

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 111

name on the boot command

For network bootstrap, the following additional environment variables are available:

Variable Value
NET_DEVICE The name of the network device (for example, “eth0”). This should

be the same as the value of BOOT_DEVICE.
NET_IPADDR The IP address for this network device (dotted decimal notation)
NET_NETMASK The netmask for this network device (dotted decimal notation)
NET_GATEWAY The gateway address, if any (dotted decimal notation)
NET_NAMESERVER The name server address (dotted decimal notation)
NET_DOMAIN The domain name, if available (e.g., “broadcom.com”)
NET_HOSTNAME The host’s name, if available (not including the domain name)

If a parameter is not present (either not set explicitly or obtained via the DHCP server), the
environment variable will not exist.

8.2.3 Registers passed to boot loaders
When CFE invokes the boot loader, it passes the following values in registers:

Register Value
A0 Firmware handle. This value must be passed back to CFE each time the loaded

program wants to use CFE’s API. The firmware handle is a pointer to CFE’s data
segment.

A1 Zero
A2 Firmware’s entry vector (usually 0x9FC0500, but could be different if CFE has

been relocated into RAM)
A3 Entry point seal. You can use this value to make sure you were invoked from

CFE. The value is 0x43464531, the same as the one in the ROM entry point
vector.

When a program is invoked, it will be using CFE’s stack and the BEV (boot exception vector) bit
will still be set. The trap handler will cause the firmware to restart.

8.2.4 Registers passed to secondary processors
When CFE starts a secondary processor core, the following values will be passed in the registers:

Register Value
A0 Firmware handle. This value must be passed back to CFE each time the loaded

program wants to use CFE’s API. The firmware handle is a pointer to CFE’s data
segment.

A1 Value from the a1_val parameter list member from the CPU startup API
command

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 112

A2 Firmware’s entry vector (usually 0x9FC0500, but could be different if CFE has
been loaded into RAM)

A3 Entry point seal. You can use this value to make sure you were invoked from
CFE. The value is 0x43464531, the same as the one in the ROM entry point
vector.

SP Value from the sp_val parameter list member of the CPU startup API command
GP Value from the gp_val parameter list member of the CPU startup API command

8.2.5 Memory Map
Depending on how CFE is built, the memory map can vary greatly. The most common and
perhaps the most useful CFE configuration is to include a relocatable data segment. When built
in this manner, CFE will try to locate its data structures as high in physical memory as is
possible. For systems with more than 256MB of memory, the data structures will be as high in
the first 256MB block as possible, to ensure that regular (not extended) addressing can be used at
all times.

CFE’s Heap

CFE’s Initialized Data
CFE’s Code

Boot Area
(256KB)

Free space

Marked “in use”
by firmware

Marked
“Available
DRAM

Unused
Address space Not marked

Bottom of Phys
memory (0)

Top of physical
memory

Top of physical
address space

CFE’s Stack

If CFE is built to use a specific data segment address the boot area will be placed at the top of
physical memory, unless it conflicts with the firmware’s data segment.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 113

8.3 Disk Bootstrap

When loading a bootstrap program from the network, you can specify the file’s name on the
remote system.

When booting from the disk, you do not necessarily have a file system to read the bootstrap
from, so the bootstrap generally does not have a name or a predefined size.

CFE looks for a special record called the boot block on a block-structured (disk, tape, CD-ROM)
device. The record has the following layout:

Reserved

BOOT_MAGIC_NUMBER

Size of Loader (bytes)

Architecture Information

Header ChecksumFlags

Loader Location (byte offset)

Loader Checksum

Reserved

Vers

+472

+480

+488

+496

+504

64 bits

40
bytes

The boot record is located at offset 472 in the a given 512-byte sector and is 40 bytes (five 64-bit
words) long.

The boot record is normally located in the first sector of the boot device. To accommodate
multiple architectures sharing the boot media (for example, on CD-ROMs), CFE will search the
first 16 sectors of the boot device to find a valid boot block.

The fields in the boot block are stored in native byte order, and should be accessed as 64-bit
quantities to make parsing the fields easier. The fields are summarized below:

Field Value
BOOT_MAGIC_NUMBER The constant 0x43465631424f4f5
Flags Special flags for using this boot block (none currently defined,

so this field should be zero)
Reserved Ignored; set to zero

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 114

Vers Boot block version. The current version is 1.
Header Checksum Header checksum – the checksum of the 40 bytes of this boot

block (see below)
Loader Location The byte offset into the media where the loader begins
Loader Checksum The checksum for the loader code (see below)
Size of Loader The size of the loader, in bytes
Architecture Information Any architecture-specific information. None are currently

defined, so this field should be set to zero.

The checksum is a simple checksum, generated by totaling all of the 32-bit words in the header
or loader program. For loader programs that are not even multiples of 32 bits in length, the fill
bytes should be considered as zero. The header checksum is calculated after the loader
checksum has been placed in the data structure, and while calculating the header checksum, the
header checksum field itself is assumed to be zero.

Pay particular attention to the host and target endianness, especially in a cross-development
environment. The checksum calculation must be made reading the words of the header and
loader in target-endian format, just as they will be when running on the hardware.

8.3.1 Generating a Boot Block

There are two programs in the hosttools/ directory for generating boot blocks. The first is
mkbootimage, which takes a binary file (a raw binary executable linked to run in the boot
environment) and preprends a 512-byte record containing a CFE boot block to it. This image
may then be placed on a real or simulated hard disk for booting. The mkbootimage program is
run as follows:

 mkbootimage [-v] [-EB] [-EL] inputfile outputfile

Where –EB and –EL specify the target endianness. The –v switch causes mkbootimage to print
out messages describing its progress. The inputfile parameter is the raw binary image, and
outputfile is the file to write that will contain the boot block prepended to the binary image.

The second program is installboot, which is only useful if you are working with the simulated
IDE disk in the BCM1250’s functional simulator. The installboot program takes the boot block
(output from mkbootimage, above) and writes it to the beginning of a simulated disk file. The
first 480 bytes of the first sector will be preserved by installboot so as not to conflict with BSD
disklabels. The installboot program is run as follows:

 installboot inputfile outputfile

where inputfile is the output from mkbootimage and outputfile is your simulated disk file.

8.4 API functions

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 115

All of CFE’s API function parameters are passed in an I/O Control Block (IOCB). The “C” data
structure name for this structure is cfe_xiocb_t, where “xiocb” stands for an external IOCB.
Internally, CFE uses the same structure for communicating with itself, but the XIOCB differs in
that all of the fields are 64 bits wide (even on 32-bit versions of CFE) and the XIOCB structures
will remain the same even if the internal IOCB functions are modified. A translation module
inside CFE converts the XIOCB into an IOCB, and should an incompatible change to the IOCB
structure be needed, the translation module can be enhanced to make up for the differences that
were introduced.

The XIOCB structure has two parts: a fixed header and a parameter list. The contents of the
parameter list depend on the function code and the value of the xiocb_psize member, which
contains the length of the parameter list. The XIOCB is defined as the following “C” structure:

typedef struct cfe_xiocb_s {
 cfe_xuint_t xiocb_fcode; /* IOCB function code */
 cfe_xint_t xiocb_status; /* return status */
 cfe_xint_t xiocb_handle; /* file/device handle */
 cfe_xuint_t xiocb_flags; /* flags for this IOCB */
 cfe_xuint_t xiocb_psize; /* size of parameter list */
 union {
 xiocb_buffer_t xiocb_buffer; /* buffer parameters */
 xiocb_inpstat_t xiocb_inpstat;/* input status parameters */
 xiocb_envbuf_t xiocb_envbuf; /* environment function parameters */
 xiocb_cpuctl_t xiocb_cpuctl; /* CPU control parameters */
 xiocb_time_t xiocb_time; /* timer parameters */
 xiocb_meminfo_t xiocb_meminfo;/* memory arena info parameters */
 xiocb_exitstat_t xiocb_exitstat; /* exit status */
 } plist;
} cfe_xiocb_t;

The types cfe_xuint_t and cfe_xint_t are 64-bit unsigned and signed integers, respectively. When
placing a buffer address in a parameter list member from a 32-bit application, be sure to sign-
extend the address in case you will be calling the 64-bit version of CFE.5

8.5 Vendor Extensions

Vendors who port CFE to their designs can extend the IOCB interface. If the bsp_config.h
option CFG_VENDOR_EXTENSIONS is defined, all commands with function codes above the
constant CFE_FW_CMD_VENDOR_USE are directed to a dispatch routine in the vendor/ directory in
the source tree. This dispatch routine works in a manner very similar to the standard dispatch
routine, except Broadcom will attempt to minimize changes to the files in the vendor/ directory
from release to release.

5 Would it be a good idea to have a whole section on 64/32 bit issues?

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 116

8.5.1 CFE_CMD_FW_GETINFO

This function returns important global information about CFE.

Request structure fields:

xiocb field Description
xiocb_fcode 0 (CFE_CMD_FW_GETINFO)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0
xiocb_psize sizeof(xiocb_fwinfo_t)

Return structure fields:

xiocb field Description
plist:fwi_version Major, minor, and ECO version of CFE. For example, the

value 0x010203 would mean version 1.2.3.
plist:fwi_totalmem Total installed memory in all memory regions.
plist:fwi_flags Flags about this version of CFE:

CFE_FWI_64BIT – set if using the 64-bit version
CFE_FWI_32BIT – set if using the 32-bit version
CFE_FWI_RELOC – set if data segment is relocatable
CFE_FWI_UNCACHED – set if running in KSEG1
CFE_FWI_MULTICPU – more than one CPU supported
CFE_FWI_FUNCSIM – set if running in functional simulator
CFE_FWI_RTLSIM – set if running in the RTL simulator

plist:fwi_boardid A number specified in the CFG_BOARD_ID parameter in
the bsp_config.h file. You can use this to detect subtle
differences in firmware or options.

plist:fwi_bootarea_va The virtual address of the boot area, 0x20000000.
plist:fwi_bootarea_pa The physical address of the boot area
plist:fwi_bootarea_size The size of the boot area, 256KB (0x40000)
plist:fwi_reserved1
plist:fwi_reserved2
plist:fwi_reserved3

Reserved, will return zero

Error codes:

Code Description
(none)

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 117

8.5.2 CFE_CMD_FW_RESTART

Restarts the firmware. This function is used when an operating system exits or an application
loaded by CFE wishes to return to the CFE command prompt.

A warm start may not work in all circumstances, particularly if devices are not shut down cleanly
and the hardware is left in an unstable state. CFE will restore the boot exception vectors,
reinitialize the CP0 registers, and invalidate all of the TLB entries when restarted via a warm
start.

Request structure fields:

xiocb field Description
xiocb_fcode 1 (CFE_CMD_FW_RESTART)
xiocb_status 0
xiocb_handle 0
xiocb_flags CFE_FLG_COLDSTART for a cold start

CFE_FLG_WARMSTART to skip initializing devices
xiocb_psize sizeof(cfe_exitstat_t)
plist:status Exit status (0 = successful)

Return structure fields:

xiocb field Description
none function does not return

Error codes:

Code Description
none function does not return

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 118

8.5.3 CFE_CMD_FW_CPUCTL

Control secondary processor cores. This routine is used to direct control of secondary processor
cores to a user routine. During startup, the firmware initializes the processor cores and leaves
secondary processors in a “holding pattern” waiting for work to do. When this firmware call is
issued, control on the secondary processor can be passed to a user routine. The CPU commands
understood by this firmware call are:

Command (cpu_command
field)

Description

CFE_CPU_CMD_START Start the specified CPU at the start_addr address.
CFE_CPU_CMD_STOP Stop the specified CPU, causing it to return to the idle

loop. This call must be made from CPU0.
CFE_CPU_CMD_IDLE Return to the idle loop. This is called from the

secondary CPU, and may not be called from CPU0.
The current CPU enters CFE’s idle loop and stays
there. The function does not return. Note: Not
implemented.

Request structure fields:

xiocb field Description
xiocb_fcode 3 (CFE_CMD_FW_CPUCTL)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0
xiocb_psize sizeof(xiocb_cpuctl_t)
plist:cpu_number CPU number (starting with 1) for CFE_CPU_CMD_START

and CFE_CPU_CMD_STOP
plist:cpu_command Command to issue to the specified CPU
plist:start_addr Start address (if starting a CPU)
plist:sp_val Initial value of the SP register
plist:gp_val Initial value of the GP register
plist:a1_val Initial value of the A1 register

Return structure fields:

xiocb field Description
none none

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 119

Error codes:

Code Description
CFE_ERR_INV_COMMAND Firmware does not support secondary CPUs
CFE_ERR_INV_PARAM CPU number or CPU command are invalid

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 120

8.5.4 CFE_CMD_FW_GETTIME

Obtain system time and call internal polling functions. This routine can be used to obtain CFE’s
idea of the system time (see the timer manager for details). It also causes the internal device
polling routines to be run, so boot loaders should periodically call this service to ensure that
network timeouts occur and packets are processed.

Request structure fields:

xiocb field Description
xiocb_fcode 4 (CFE_CMD_FW_GETTIME)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0
xiocb_psize sizeof(xiocb_time_t)

Return structure fields:

xiocb field Description
plist:ticks Current system time in ticks (units of CFE_HZ)

Error codes:

Code Description
none none

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 121

8.5.5 CFE_CMD_FW_MEMENUM

Enumerate the contents of the arena for available DRAM. This routine is used by operating
systems to determine the areas of physical memory that are available for use. It is an
enumerator, so it must be called repeatedly until it returns an error to obtain all of the memory
block information. The first time it is called, set mi_idx to zero, and then increment it for each
call until an error is returned.

Request structure fields:

xiocb field Description
xiocb_fcode 5 (CFE_CMD_FW_MEMENUM)
xiocb_status 0
xiocb_handle 0
xiocb_flags CFG_FLG_FULL_ARENA set to return all memory blocks,

otherwise only available DRAM blocks are returned.
xiocb_psize sizeof(xiocb_meminfo_t)
plist:mi_idx index of entry to query, starting with zero.

Return structure fields:

xiocb field Description
plist:mi_type Type of memory block:

CFE_MI_AVAILABLE = block is available for use
CFE_MI_RESERVED = reserved memory block
other values are reserved by applications.

plist:mi_addr Physical address of the start of the block
plist:mi_size Size of the memory block, in bytes

Error codes:

Code Description
CFE_ERR_NOMORE No more memory blocks

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 122

8.5.6 CFE_CMD_FW_FLUSHCACHE

Perform cache operations. After loading software from a boot device, it is important to flush the
Dcache and invalidate the Icache to ensure that the correct instructions will be executed. Cache
operations are applied to the entire cache.

Request structure fields:

xiocb field Description
xiocb_fcode 6 (CFE_CMD_FW_FLUSHCACHE)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0 to flush D and invalidate I, else a combination of:

CFE_CACHE_FLUSH_D : flush D cache (write back to memory)
CFE_CACHE_INVAL_I : invalidate I cache
CFE_CACHE_INVAL_D : invalidate D cache
CFE_CACHE_INVAL_L2 : invalidate L2 cache

xiocb_psize 0
plist none

Return structure fields:

xiocb field Description
none none

Error codes:

Code Description
none none

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 123

8.5.7 CFE_CMD_DEV_GETHANDLE

Obtain a standard file handle. This function is normally used to get the handle for the console
device. Since CFE internally uses the console for its own purposes, it does not close the console
when it transfers control to another program. You can obtain the handle that CFE uses for the
console with the CFE_CMD_DEV_GETHANDLE function and then use it for writing console
messages.

Request structure fields:

xiocb field Description
xiocb_fcode 9 (CFE_CMD_DEV_GETHANDLE)
xiocb_status 0
xiocb_handle 0
xiocb_flags Indicates which handle to get:

CFE_STDHANDLE_CONSOLE : obtain console handle
xiocb_psize 0
plist none

Return structure fields:

xiocb field Description
xiocb_handle File handle, if successful

Error codes:

Code Description
CFE_ERR_DEVNOTFOUND Console handle is not open, or there is no console
CFE_ERR_INV_PARAM The xiocb_flags parameter is invalid

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 124

8.5.8 CFE_CMD_DEV_ENUM

Enumerate the devices that are present in the system. This function allows a boot loader to scan
the list of device drivers known to CFE. Note that this does not necessarily mean all of the
devices present in the system will be enumerated, just the ones that CFE has been built to
recognize. The function returns the device names (boot names and device names).

Request structure fields:

xiocb field Description
xiocb_fcode 10 (CFE_CMD_DEV_ENUM)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0
xiocb_psize sizeof(xiocb_envbuf_t)
plist:enum_idx Enumeration index. Start with 0, and increment each time

you call this function until it returns an error.
plist:name_ptr Points to a buffer to receive the device’s boot name.
plist:name_length Length of buffer receiving device’s boot name
plist:val_ptr Points to a buffer to receive the device’s full name
plist:val_length Length of buffer receiving device’s full name

Return structure fields:

xiocb field Description
plist:name_length Length of device’s boot name
plist:val_length Length of device’s full name

Error codes:

Code Description
CFE_ERR_DEVNOTFOUND No device at the specified index

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 125

8.5.9 CFE_CMD_DEV_OPEN

Open a device. CFE will search the device table for the specified device and open it. You may
specify either the boot name or the full name for the device. Once the device is open, CFE will
return a handle that you can use for subsequent READ, WRITE, IOCTL, and CLOSE calls.

Request structure fields:

xiocb field Description
xiocb_fcode 11 (CFE_CMD_DEV_OPEN)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0
xiocb_psize sizeof(xiocb_buffer_t)
plist:buf_ptr Points to name of device to open (null terminated)
plist:buf_length Size of the name of the device, including null byte

Return structure fields:

xiocb field Description
xiocb_handle File handle if the operation was successful

Error codes:

Code Description
CFE_ERR_DEVNOTFOUND No device with the specified name was found to open
CFE_ERR_DEVOPEN The device is already open.
CFE_ERR_NOMEM Insufficient memory to open device
others Device-specific error codes may be returned

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 126

8.5.10 CFE_CMD_DEV_INPSTAT

Request input status for a device. This command tests to see if data is ready to be read for an
open device and returns a flag. For serial port drivers, this indicates that characters are waiting
in the receive buffer. For network drivers, this indicates that packets are waiting.

Request structure fields:

xiocb field Description
xiocb_fcode 12 (CFE_CMD_DEV_INPSTAT)
xiocb_status 0
xiocb_handle An open file handle, from CFE_CMD_DEV_OPEN
xiocb_flags 0
xiocb_psize sizeof(xiocb_inpstat_t)
plist

Return structure fields:

xiocb field Description
plist:inp_status Zero if no data is available to read, one if data is available to

read

Error codes:

Code Description
CFE_ERR_INV_PARAM The file handle is invalid.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 127

8.5.11 CFE_CMD_DEV_READ

Read data from a device. The amount of data read depends on the type of device. For example,
a serial port device will only return the amount of data available in its FIFO, while a network
device will return an entire packet (discarding the portion of the packet beyond the length of the
user’s request buffer). Block devices such as disks and CD-ROMs must specify an offset in the
xiocb_buffer_t parameter list. This is a byte offset into the device (should be aligned to a natural
sector boundary compatible with the device, but it is not required).

Request structure fields:

xiocb field Description
xiocb_fcode 13 (CFE_CMD_DEV_READ)
xiocb_status 0
xiocb_handle An open file handle from CFE_CMD_DEV_OPEN
xiocb_flags 0
xiocb_psize sizeof(xiocb_buffer_t)
plist:buf_offset Offset (in bytes) into the device. This is used only for block

devices such as CD-ROMs and disks.
plist:buf_ptr Pointer to user buffer to receive the data
plist:buf_length Length of buffer receiving the data

Return structure fields:

xiocb field Description
plist:buf_retlen Actual number of bytes returned from the device

Error codes:

Code Description
CFE_ERR_INV_PARAM File handle is invalid
others Device may return device-specific error codes

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 128

8.5.12 CFE_CMD_DEV_WRITE

Write data to the specified device. The way the data is written to the device depends on the
device’s type. For example, network devices will write an entire packet using this call (the
buffer points at the MAC header, usually the destination address). UART devices write as many
characters as will fill up the FIFO. Disk devices write blocks of data and must specify the
buf_offset field in the xiocb_buffer_t parameter list.

CFE device write operations do not block, so if more characters are written to a device (most
likely a serial device) than will fit in the FIFO, the call will write as many as it can and return
(passing back the actual number of characters written). The user must advance the write pointer
and repeat the call until all of the characters are flushed to the device. This scheme gives CFE
and the calling program the opportunity to poll for other devices.

Request structure fields:

xiocb field Description
xiocb_fcode 14 (CFE_CMD_DEV_WRITE)
xiocb_status 0
xiocb_handle An open file handle, from CFE_CMD_DEV_OPEN
xiocb_flags 0
xiocb_psize sizeof(xiocb_buffer_t)
plist:buf_offset For block devices such as disks, the offset (in bytes) into the

device where the write is to start. If this offset is not sector-
aligned, the device driver will read/modify/write the partial
sector (at the beginning and end, if necessary).

plist:buf_ptr Pointer to the user buffer containing the data to write
plist:buf_length Length of the user buffer, in bytes

Return structure fields:

xiocb field Description
plist:buf_retlen Number of bytes actually written to the device

Error codes:

Code Description
CFE_ERR_INV_PARAM File handle is invalid
others Device may return device-specific error codes

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 129

8.5.13 CFE_CMD_DEV_IOCTL

Perform device-specific I/O operations. This is an “escape” call for accessing device functions
particular to a device or device type. Refer to section XXX for details on the operations of
individual device IOCTL calls.

Request structure fields:

xiocb field Description
xiocb_fcode 15 (CFE_CMD_DEV_IOCTL)
xiocb_status 0
xiocb_handle An open file handle, from CFE_CMD_DEV_OPEN
xiocb_flags 0
xiocb_psize sizeof(xiocb_buffer_t)
plist:buf_offset Buffer offset, if needed by IOCTL function
plist:buf_ptr pointer to user buffer, if needed by IOCTL function
plist:buf_length Length of user buffer, if needed by IOCTL function
plist:buf_ioctlcmd IOCTL command code. This code distinguishes among

different IOCTLs supported by a device.

Return structure fields:

xiocb field Description
plist Parameter list members may be modified by the IOCTL

function

Error codes:

Code Description
CFE_ERR_INV_PARAM File handle is invalid
others Device may return device-specific error codes

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 130

8.5.14 CFE_CMD_DEV_CLOSE

Close a device handle. You should close the device when you are finished using it to prevent
resources from being consumed and to make the device available for other callers.

Request structure fields:

xiocb field Description
xiocb_fcode 16 (CFE_CMD_DEV_CLOSE)
xiocb_status 0
xiocb_handle A file handle, from CFE_CMD_DEV_OPEN
xiocb_flags 0
xiocb_psize 0
plist none

Return structure fields:

xiocb field Description
none none

Error codes:

Code Description
CFE_ERR_INV_PARAM File handle is invalid

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 131

8.5.15 CFE_CMD_DEV_GETINFO

Obtain information about a device given the device’s name. You can use this function to test if a
device exists and find out what type of device (serial, disk, etc.) before opening the device.

Request structure fields:

xiocb field Description
xiocb_fcode 17 (CFE_CMD_DEV_GETINFO)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0
xiocb_psize sizeof(xiocb_buffer_t)
plist:buf_ptr Pointer to user buffer containing device name (null-

terminated)
plist:buf_length Size of user buffer containing device name (including null

byte)

Return structure fields:

xiocb field Description
plist:buf_devflags Device type flags. You can use the mask CFE_DEV_MASK

with this field to determine the device type, from one of the
CFE_DEV_xxx constants.

Error codes:

Code Description
CFE_ERR_DEVNOTFOUND There is no device with the specified name.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 132

8.5.16 CFE_CMD_ENV_ENUM

Enumerate environment variables. This function is used to walk through the environment,
obtaining all of the environment variable names and values. You call this function repeatedly
starting with enum_idx equal to zero and increment it until it returns an error.

Request structure fields:

xiocb field Description
xiocb_fcode 20 (CFE_CMD_ENV_ENUM)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0
xiocb_psize sizeof(iocb_envbuf_t)
plist:enum_idx Index of environment variable to retrieve, starting with zero
plist:name_ptr Pointer to user buffer to receive variable name (will be null

terminated)
plist:name_length Size of buffer to receive variable name
plist:val_ptr Pointer to user buffer to receive variable value (will be null

terminated)
plist:val_length Size of buffer to receive variable value

Return structure fields:

xiocb field Description
none none

Error codes:

Code Description
CFE_ERR_ENVNOTFOUND enum_idx is too large, no more environment variables.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 133

8.5.17 CFE_CMD_ENV_GET

Get the value of an environment variable.

Request structure fields:

xiocb field Description
xiocb_fcode 22 (CFE_CMD_ENV_GET)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0
xiocb_psize sizeof(iocb_envbuf_t)
plist:name_ptr Pointer to user buffer containing variable name to retrieve

(null-terminated)
plist:name_length Size of buffer containing variable name (including null byte)
plist:val_ptr Pointer to user buffer to receive variable value
plist:val_length Size of buffer to receive variable value

Return structure fields:

xiocb field Description
none none

Error codes:

Code Description
CFE_ERR_ENVNOTFOUND Specified environment variable was not found.

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 134

8.5.18 CFE_CMD_ENV_SET

Set the value of an environment variable.

Request structure fields:

xiocb field Description
xiocb_fcode 23 (CFE_CMD_ENV_SET)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0 for normal variables (will not be saved to the NVRAM),

else CFE_FLG_ENV_PERMANENT to cause the environment
variable to be written to NVRAM.

xiocb_psize sizeof(iocb_envbuf_t)
plist:name_ptr Pointer to user buffer containing variable name, null

terminated
plist:name_length Size of buffer containing variable name, including null byte
plist:val_ptr Pointer to user buffer containing variable’s new value, null

terminated
plist:val_length Size of buffer containing variable’s new value, including null

byte

Return structure fields:

xiocb field Description
none none

Error codes:

Code Description
CFE_ERR_NOMEM Insufficient memory
CFE_ERR_ENV_READONLY The specified environment variable is read-only
CFE_ERR_IOERR I/O error writing to the NVRAM device

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 135

8.5.19 CFE_CMD_ENV_DEL

Delete the value of an environment variable. The variable will also be deleted from the
nonvolatile device, if present.

Request structure fields:

xiocb field Description
xiocb_fcode 24 (CFE_CMD_ENV_DEL)
xiocb_status 0
xiocb_handle 0
xiocb_flags 0
xiocb_psize sizeof(iocb_envbuf_t)
plist:name_ptr Pointer to user buffer containing variable name, null

terminated
plist:name_length Size of buffer containing variable name, including null byte

Return structure fields:

xiocb field Description
none none

Error codes:

Code Description
CFE_ERR_NOMEM Insufficient memory
CFE_ERR_ENV_READONLY Environment variable is read-only
CFE_ERR_IOERR I/O error writing to the NVRAM device

Common Firmware Environment (CFE) Functional Specification

© 2000-2003 Broadcom Corporation 136

LAST PAGE

