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CHAPTER

9
Applications of the DFT

The Discrete Fourier Transform (DFT) is one of the most important tools in Digital Signal
Processing.  This chapter discusses three common ways it is used.  First, the DFT can calculate
a signal's frequency spectrum.  This is a direct examination of information encoded in the
frequency, phase, and amplitude of the component sinusoids.  For example, human speech and
hearing use signals with this type of encoding.   Second, the DFT can find a system's frequency
response from the system's impulse response, and vice versa.  This allows systems to be analyzed
in the frequency domain, just as convolution allows systems to be analyzed in the time domain.
Third, the DFT can be used as an intermediate step in more elaborate signal processing
techniques.   The classic example of this is FFT convolution, an algorithm for convolving signals
that is hundreds of times faster than conventional methods. 

Spectral Analysis of Signals

It is very common for information to be encoded in the sinusoids that form
a signal.  This is true of naturally occurring signals, as well as those that
have been created by humans.   Many things oscillate in our universe.  For
example, speech is a result of vibration of the human vocal cords;  stars
and planets change their brightness as they rotate on their axes and revolve
around each other; ship's propellers generate periodic displacement of the
water, and so on.  The shape of the time domain waveform is not important
in these signals; the key information is in the frequency, phase and
amplitude of the component sinusoids.  The DFT is used to extract this
information. 

An example will show how this works.  Suppose we want to investigate the
sounds that travel through the ocean.  To begin, a microphone is placed in the
water and the resulting electronic signal amplified to a reasonable level, say a
few volts.  An analog low-pass filter is then used to remove all frequencies
above 80 hertz, so that the signal can be digitized at 160 samples per second.
After acquiring and storing several thousand samples, what next?
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The first thing is to simply look at the data.  Figure 9-1a shows 256 samples
from our imaginary experiment.  All that can be seen is a noisy waveform that
conveys little information to the human eye.  For reasons explained shortly, the
next step is to multiply this signal by a smooth curve called a Hamming
window, shown in (b).  (Chapter 16 provides the equations for the Hamming
and other windows; see Eqs. 16-1 and 16-2, and Fig. 16-2a).  This results in
a 256 point signal where the samples near the ends have been reduced in
amplitude, as shown in (c). 

Taking the DFT, and converting to polar notation, results in the 129 point
frequency spectrum in (d).  Unfortunately, this also looks like a noisy mess.
This is because there is not enough information in the original 256 points to
obtain a well behaved curve.   Using a longer DFT does nothing to help this
problem.  For example, if a 2048 point DFT is used, the frequency spectrum
becomes 1025 samples long.  Even though the original 2048 points contain
more information, the greater number of samples in the  spectrum dilutes the
information by the same factor.   Longer DFTs provide better frequency
resolution, but the same noise level.    

The answer is to use more of the original signal in a way that doesn't
increase the number of points in the frequency spectrum.  This can be done
by breaking the input signal into many 256 point segments.  Each of these
segments is multiplied by the Hamming window, run through a 256 point
DFT, and converted to polar notation.  The resulting frequency spectra are
then averaged to form a single 129 point frequency spectrum.  Figure (e)
shows an example of averaging 100 of the frequency spectra typified by (d).
The improvement is obvious; the noise has been reduced to a level that
allows interesting features of the signal to be observed.  Only the
magnitude of the frequency domain is averaged in this manner; the phase
is usually discarded because it doesn't contain useful information.  The
random noise reduces in proportion to the square-root of the number of
segments.  While 100 segments is typical, some applications might average
millions of segments to bring out weak features. 

There is also a second method for reducing spectral noise.  Start by taking a
very long DFT, say 16,384 points.  The resulting frequency spectrum is high
resolution (8193 samples),  but very noisy.  A low-pass digital filter is then
used to smooth the spectrum, reducing the noise at the expense of the
resolution.  For example, the simplest digital filter might average 64 adjacent
samples in the original spectrum to produce each sample in the filtered
spectrum.  Going through the calculations, this provides about the same noise
and resolution as the first method, where the 16,384 points would be broken
into 64 segments of 256 points each.

Which method should you use?  The first method is easier, because the
digital filter isn't needed.  The second method has the potential of better
performance, because the digital filter can be tailored to optimize the trade-
off between noise and resolution.  However, this improved performance is
seldom worth the trouble.  This is because both noise and resolution can
be improved by using more data from the input signal.  For example,
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e.  Averaged spectrumFIGURE 9-1
An example of spectral analysis.  Figure (a) shows
256 samples taken from a (simulated) undersea
microphone at a rate of 160 samples per second.
This signal is multiplied by the Hamming window
shown in (b), resulting in the windowed signal in
(c).  The frequency spectrum  of the windowed
signal is found using the DFT,  and is displayed in
(d) (magnitude only).  Averaging 100 of these
spectra reduces the random noise, resulting in the
averaged frequency spectrum shown in (e).
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imagine breaking the acquired data into 10,000 segments of 16,384 samples
each.  This resulting frequency spectrum is high resolution (8193 points) and
low noise (10,000 averages).  Problem solved!  For this reason, we will only
look at the averaged segment method in this discussion. 

Figure 9-2 shows an example spectrum from our undersea microphone,
illustrating the features that commonly appear in the frequency spectra of
acquired signals.  Ignore the sharp peaks for a moment.  Between 10 and 70
hertz, the signal consists of a relatively flat region.  This is called white noise
because it contains an equal amount of all frequencies, the same as  white light.
It results from the noise on the time domain waveform being uncorrelated from
sample-to-sample.  That is, knowing the noise value present on any one sample
provides no information on the noise value present on any other sample.  For
example, the random motion of electrons in electronic circuits produces white
noise.  As a more familiar example, the sound of the water spray hitting the
shower floor is white noise.  The white noise shown in Fig. 9-2 could be
originating from any of several sources, including the analog electronics, or the
ocean itself.

Above 70 hertz, the white noise rapidly decreases in amplitude.  This is a result
of the roll-off of the antialias filter.  An ideal filter would pass all frequencies
below 80 hertz, and block all frequencies above.  In practice, a perfectly sharp
cutoff isn't possible, and you should expect to see this gradual drop.  If you
don't, suspect that an aliasing problem is present. 

Below about 10 hertz, the noise rapidly increases due to a curiosity called 1/f
noise  (one-over-f noise).  1/f noise is a mystery.  It has been measured in very
diverse systems, such as traffic density on freeways and electronic noise in
transistors.  It probably could be measured in all systems, if you look low
enough in frequency.  In spite of its wide occurrence, a general theory and
understanding of 1/f noise has eluded researchers.  The cause of this noise can
be identified in some specific systems; however, this doesn't answer the
question of why 1/f noise is everywhere.  For common analog electronics and
most physical systems, the transition between white noise and 1/f noise occurs
between about 1 and 100 hertz.  

Now we come to the sharp peaks in Fig. 9-2.  The easiest to explain is at 60
hertz, a result of electromagnetic interference from commercial electrical
power.  Also expect to see smaller peaks at multiples of this frequency (120,
180, 240 hertz, etc.) since the power line waveform is not a perfect sinusoid.
It is also common to find interfering peaks between 25-40 kHz, a favorite for
designers of switching power supplies.  Nearby radio and television stations
produce interfering peaks in the megahertz range.  Low frequency peaks can be
caused by components in the system vibrating when shaken. This is called
microphonics, and typically creates peaks at 10 to 100 hertz.

Now we come to the actual signals.  There is a strong peak at 13 hertz, with
weaker peaks at 26 and 39 hertz.  As discussed in the next chapter, this is the
frequency spectrum of a nonsinusoidal periodic waveform.  The peak at 13
hertz is called the fundamental frequency, while the peaks at 26 and 39
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FIGURE 9-2
Example frequency spectrum. Three types of
features appear in the spectra of acquired
signals: (1) random noise, such as white noise
and 1/f noise, (2) interfering signals from power
lines, switching power supplies, radio and TV
stations, microphonics, etc., and (3) real signals,
usually appearing as a fundamental plus
harmonics.  This example  spectrum (magnitude
only) shows several of these features. 
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FIGURE 9-3
Frequency spectrum resolution.  The longer the DFT, the better the ability to separate closely spaced features.  In
these example magnitudes, a 128 point DFT cannot resolve the two peaks, while a 512 point DFT can.
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hertz are referred to as the second and third harmonic respectively.  You
would also expect to find peaks at other multiples of 13 hertz, such as 52,
65, 78 hertz, etc.  You don't see these in Fig. 9-2 because they are buried
in the white noise.  This 13 hertz signal might be generated, for example,
by a submarines's three bladed propeller turning at 4.33 revolutions per
second.  This is the basis of passive sonar, identifying undersea sounds by
their frequency and harmonic content.

Suppose there are peaks very close together, such as shown in Fig. 9-3.  There
are two factors that limit the frequency resolution that can be obtained, that is,
how close the peaks can be without merging into a single entity.  The first
factor is the length of the DFT.  The frequency spectrum produced by an N
point DFT consists of  samples equally spaced between zero and one-N/2%1
half of the sampling frequency.  To separate two closely spaced frequencies,
the sample spacing must be smaller than the distance between the two peaks.
For example, a 512 point DFT is sufficient to separate the peaks in Fig. 9-3,
while a 128 point DFT is not.
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FIGURE 9-4
Example of using a window in spectral analysis.  Figure (a) shows the frequency spectrum (magnitude only) of a signal
consisting of two sine waves.  One sine wave has a frequency exactly equal to a basis function, allowing it to be
represented by a single sample. The other sine wave has a frequency between two of the basis functions, resulting in
tails on the peak.  Figure (b) shows the frequency spectrum of the same signal, but with a Hamming window applied
before taking the DFT.  The window makes the peaks look the same and reduces the tails, but broadens the peaks.

The second factor limiting resolution is more subtle.  Imagine a signal
created by adding two sine waves with only a slight difference in their
frequencies.  Over a short segment of this signal, say a few periods, the
waveform will look like a single sine wave.  The closer the frequencies, the
longer the segment must be to conclude that more than one frequency is
present.  In other words, the length of the signal limits the frequency
resolution.  This is distinct from the first factor, because the length of the
input signal does not have to be the same as the length of the DFT.  For
example, a 256 point signal could be padded with zeros to make it 2048
points long.  Taking a 2048 point DFT produces a frequency spectrum with
1025 samples.  The added zeros don't change the shape of the spectrum,
they only provide more samples in the frequency domain.  In spite of this
very close sampling, the ability to separate closely spaced peaks would be
only slightly better than using a 256 point DFT.  When the DFT is the same
length as the input signal, the resolution is limited about equally by these
two factors.  We will come back to this issue shortly.  

Next question:  What happens if the input signal contains a sinusoid with a
frequency between two of the basis functions?   Figure 9-4a shows the answer.
This is the frequency spectrum of a signal composed of two sine waves, one
having a frequency matching a basis function, and the other with a frequency
between two of the basis functions.   As you should expect, the first sine wave
is represented as a single point.  The other peak is more difficult to understand.
Since it cannot be represented by a single sample, it becomes a peak with tails
that extend a significant distance away.

The solution?  Multiply the signal by a Hamming window before taking the
DFT, as was previously discussed.  Figure (b) shows that the spectrum is
changed in three ways by using the window.  First, the two peaks are made
to look more alike.  This is good.  Second, the tails are greatly reduced.
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This is also good.  Third, the window reduces the resolution in the spectrum by
making the peaks wider.  This is bad.  In DSP jargon, windows provide a trade-
off between resolution (the width of the peak) and spectral leakage (the
amplitude of the tails).

To explore the theoretical aspects of this in more detail, imagine an infinitely
long discrete sine wave at a frequency of 0.1 the sampling rate.  The frequency
spectrum of this signal is an infinitesimally narrow peak, with all other
frequencies being zero.  Of course, neither this signal nor its frequency
spectrum can be brought into a digital computer, because of their infinite and
infinitesimal nature.  To get around this, we change the signal in two ways,
both of which distort the true frequency spectrum.  

First, we truncate the information in the signal, by multiplying it by a window.
For example, a 256 point rectangular window would allow 256 points to retain
their correct value, while all the other samples in the infinitely long signal
would be set to a value of zero.  Likewise, the Hamming window would shape
the retained samples, besides setting all points outside the window to zero.  The
signal is still infinitely long, but only a finite number of the samples have a
nonzero value. 

How does this windowing affect the frequency domain? As discussed in
Chapter 10, when two time domain signals are multiplied, the corresponding
frequency domains are convolved.  Since the original spectrum is an
infinitesimally narrow peak (i.e., a delta function), the spectrum of the
windowed signal is the spectrum of the window shifted to the location of the
peak.  Figure 9-5 shows how the spectral peak would appear using four
different window options (If you need a refresher on dB, look ahead to Chapter
14).  Figure 9-5a results from a rectangular window.   Figures (b) and (c)
result from using two popular windows, the Hamming and the Blackman (as
previously mentioned, see Eqs. 16-1 and 16-2, and Fig. 16-2a for information
on these windows). 

As shown in Fig. 9-5, all these windows have degraded the original spectrum
by broadening the peak and adding tails composed of numerous side lobes.
This is an unavoidable result of using only a portion of the original time
domain signal.  Here we can see the tradeoff between the three windows.  The
Blackman has the widest main lobe (bad), but the lowest amplitude tails
(good).  The rectangular window has the narrowest main lobe (good) but the
largest tails (bad).  The Hamming window sits between these two.

Notice in Fig. 9-5 that the frequency spectra are continuous curves, not discrete
samples.  After windowing, the time domain signal is still infinitely long, even
though most of the samples are zero. This means that the frequency spectrum
consists of  samples between 0 and 0.5, the same as a continuous line.4 /2%1

This brings in the second way we need to modify the time domain signal to
allow it to be represented in a computer: select N points from the signal.
These N points must contain all the nonzero points identified by the window,
but may also include any number of the zeros.  This has the effect
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FIGURE 9-5
Detailed view of a spectral peak using various windows.  Each peak in the frequency spectrum is a central lobe
surrounded by tails formed from side lobes. By changing the window shape, the amplitude of the side lobes can be
reduced at the expense of making the main lobe wider.  The rectangular window, (a), has the narrowest main lobe but
the largest amplitude side lobes.  The Hamming window, (b), and the Blackman window, (c), have lower amplitude side
lobes at the expense of a wider main lobe.  The flat-top window, (d), is used when the amplitude of a peak must be
accurately measured.  These curves are for 255 point windows; longer windows produce proportionately narrower peaks.

of sampling the frequency spectrum's continuous curve.  For example, if N is
chosen to be 1024, the spectrum's continuous curve will be sampled 513 times
between 0 and 0.5.  If N is chosen to be much larger than the window length, the
samples in the frequency domain will be close enough that the peaks and valleys
of the continuous curve will be preserved in the new spectrum.  If N is made the
same as the window length, the fewer number of samples in the spectrum results
in the regular pattern of peaks and valleys turning into irregular tails, depending
on where the samples happen to fall.  This explains why the two peaks in Fig. 9-
4a do not look alike.  Each peak in Fig 9-4a is a sampling of the underlying curve
in Fig. 9-5a.  The presence or absence of the tails depends on where the samples
are taken in relation to the peaks and valleys.  If the sine wave exactly matches
a basis function, the samples occur exactly at the valleys, eliminating the tails.
If the sine wave is between two basis functions, the samples occur somewhere
along the peaks and valleys, resulting in various patterns of tails.
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This leads us to the flat-top window, shown in Fig. 9-5d.  In some applications
the amplitude of a spectral peak must be measured very accurately.  Since the
DFT’s frequency spectrum is formed from samples, there is nothing to
guarantee  that a sample will occur exactly at the top of a peak.  More than
likely, the nearest sample will be slightly off-center, giving a value lower than
the true amplitude.  The solution is to use a window that produces a spectral
peak with a flat top, insuring that one or more of the samples will always have
the correct peak value.  As shown in Fig. 9-5d, the penalty for this is a very
broad main lobe, resulting in poor frequency resolution.

As it turns out, the shape we want for a flat-top window is exactly the same
shape as the filter kernel of a low-pass filter.  We will discuss the theoretical
reasons for this in later chapters; for now, here is a cookbook description of
how the technique is used.  Chapter 16 discusses a low-pass filter called the
windowed-sinc.  Equation 16-4 describes how to generate the filter kernel
(which we want to use as a window), and Fig. 16-4a illustrates the typical
shape of the curve.  To use this equation, you will need to know the value of
two parameters:  M and . These are found from the relations: , andfc M ' N&2

, where N is the length of the DFT being used, and s is the number offc ' s /N
samples you want on the flat portion of the peak (usually between 3 and 5).
Table 16-1 shows a program for calculating the filter kernel (our window),
including two subtle features: the normalization constant, K, and how to avoid
a divide-by-zero error on the center sample. When using this method, remember
that a DC value of one in the time domain will produce a peak of amplitude
one in the frequency domain. However, a sinusoid of amplitude one in the time
domain will only produce a spectral peak of amplitude one-half.  (This is
discussed in the last chapter: Synthesis, Calculating the Inverse DFT).  

Frequency Response of Systems

Systems are analyzed in the time domain by using convolution. A similar
analysis can be done in the frequency domain.  Using the Fourier transform,
every input signal can be represented as a group of cosine waves, each with a
specified amplitude and phase shift.  Likewise, the DFT can be used to
represent every output signal in a similar form.  This means that any linear
system can be completely described by how it changes the amplitude and phase
of cosine waves passing through it.  This information is called the system's
frequency response.  Since both the impulse response and the frequency
response contain complete information about the system, there must be a one-
to-one correspondence between the two.  Given one, you can calculate the
other.  The relationship between the impulse response and the frequency
response is one of the foundations of signal processing:  A system's frequency
response is the Fourier Transform of its impulse response.  Figure 9-6
illustrates these relationships.

Keeping with standard DSP notation, impulse responses use lower case
variables, while the corresponding frequency responses are upper case. Since h[ ]
is the common symbol for the impulse response,  is used for the frequencyH[ ]
response.  Systems are described in the time domain by convolution, that is:
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h[n]x[n] y[n]

H[f]X[f] Y[f]

TIME
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FIGURE 9-6
Comparing system operation in the time and frequency domains.  In the time domain, an input signal is
convolved with an impulse response, resulting in the output signal, that is, .  In the frequencyx[n] t h[n] ' y[n]
domain, an input spectrum is multiplied by a frequency response, resulting in the output spectrum, that is,

.  The DFT and the Inverse DFT relate the signals in the two domain.X[f] × H[f] ' Y[f]
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.  In the frequency domain, the input spectrum is multipliedx[n] t h[n] ' y[n]
by the frequency response, resulting in the output spectrum.  As an equation:

.  That is, convolution in the time domain corresponds toX [ f ] × H[ f ] ' Y[ f ]
multiplication in the frequency domain.
  
Figure 9-7 shows an example of using the DFT to convert a system's impulse
response into its frequency response.  Figure (a) is the impulse response of the
system.   Looking at this curve isn't going to give you the slightest idea what
the system does.  Taking a 64 point DFT of this impulse response produces the
frequency response of the system, shown in (b).  Now the function of this
system becomes obvious, it passes frequencies between 0.2 and 0.3, and rejects
all others.  It is a band-pass filter.  The phase of the frequency response could
also be examined; however, it is more difficult to interpret and less interesting.
It will be discussed in upcoming chapters.

Figure (b) is very jagged due to the low number of samples defining the curve.
This situation can be improved by padding the impulse response with zeros
before taking the DFT.   For example, adding zeros to make the impulse
response 512 samples long, as shown in (c), results in the higher resolution
frequency response shown in (d).

How much resolution can you obtain in the frequency response?  The answer
is: infinitely high, if you are willing to pad the impulse response with an
infinite number of zeros.  In other words, there is nothing limiting the
frequency resolution except the length of the DFT.   This leads to a very
important concept.  Even though the impulse response is a discrete signal, the
corresponding frequency response is continuous.  An N point DFT of the
impulse response provides  samples of this continuous curve.  If youN/2% 1
make the DFT longer, the resolution improves, and you obtain a better idea of
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FIGURE 9-7
Finding the frequency response from the impulse response.  By using the DFT, a system's impulse response,
(a), can be transformed into the system's frequency response, (b).  By padding the impulse response with zeros
(c), higher resolution can be obtained in the frequency response, (d).  Only the magnitude of the frequency
response is shown in this example; discussion of the phase is postponed until the next chapter. 

what the continuous curve looks like.  Remember what the frequency response
represents: amplitude and phase changes experienced by cosine waves as they
pass through the system.  Since the input signal can contain any frequency
between 0 and 0.5, the system's frequency response must be a continuous curve
over this range.    

This can be better understood by bringing in another member of the Fourier
transform family, the Discrete Time Fourier Transform (DTFT) .
Consider an N sample signal being run through an N point DFT, producing
an  sample frequency domain.  Remember from the last chapter thatN/2% 1
the DFT considers the time domain signal to be infinitely long and periodic.
That is, the N points are repeated over and over from negative to positive
infinity.   Now consider what happens when we start to pad the time domain
signal with an ever increasing number of zeros, to obtain a finer and finer
sampling in the frequency domain.  Adding zeros makes  the period of the
time domain longer, while simultaneously making the frequency domain
samples closer together.
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Now we will take this to the extreme, by adding an infinite number of zeros to
the time domain signal.  This produces a different situation in two respects.
First, the time domain signal now has an infinitely long period.  In other words,
it has turned into an aperiodic signal.   Second, the frequency domain has
achieved an infinitesimally small spacing between samples.  That is, it has
become a continuous signal.  This is the DTFT, the procedure that changes a
discrete aperiodic signal in the time domain into a frequency domain that is a
continuous curve.  In mathematical terms, a system's frequency response is
found by taking the DTFT of its impulse response.  Since this cannot be done
in a computer, the DFT is used to calculate a sampling of the true frequency
response.  This is the difference between what you do in a computer (the DFT)
and what you do with mathematical equations (the DTFT).

Convolution via the Frequency Domain

Suppose that you despise convolution.  What are you going to do if given an
input signal and impulse response, and need to find the resulting output signal?
Figure 9-8 provides an answer: transform the two signals into the frequency
domain, multiply them, and then transform the result back into the time domain.
This replaces one convolution with two DFTs, a multiplication, and an Inverse
DFT.  Even though the intermediate steps are very different, the output is
identical to the standard convolution algorithm.  

Does anyone hate convolution enough to go to this trouble?  The answer is yes.
Convolution is avoided for two reasons.  First, convolution is mathematically
difficult to deal with.  For instance, suppose you are given a system's impulse
response, and its output signal.  How do you calculate what the input signal is?
This is called deconvolution, and is virtually impossible to understand in the
time domain.  However, deconvolution can be carried out in the frequency
domain as a simple division, the inverse operation of multiplication. The
frequency domain becomes attractive whenever the complexity of the Fourier
Transform is less than the complexity of the convolution.   This isn't a matter
of which you like better;  it is a matter of which you hate less.  

The second reason for avoiding convolution is computation speed. For
example, suppose you design a digital filter with a kernel (impulse response)
containing 512 samples.  Using a 200 MHz personal computer with floating
point numbers, each sample in the output signal requires about one millisecond
to calculate, using the standard convolution algorithm.  In other words, the
throughput of the system is only about 1,000 samples per second.  This is 40
times too slow for high-fidelity audio, and 10,000 times too slow for television
quality video!

The standard convolution algorithm is slow because of the large number of
multiplications and additions that must be calculated.  Unfortunately, simply
bringing the problem into the frequency domain via the DFT doesn't help at all.
Just as many calculations are required to calculate the DFTs, as are required
to directly calculate the convolution.  A breakthrough was made in the problem
in the early 1960s when the Fast Fourier Transform (FFT) was developed.
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FIGURE 9-8
Frequency domain convolution. In the time domain,  is convolved with  resulting in , as is shown in Figs.x[n] h[n] y[n]
(a), (d), and (g).  This same procedure to be accomplished in the frequency domain. The DFT is used to find the
frequency spectrum of the input signal, (b) & (c), and the system's frequency response, (e) & (f).  Multiplying these two
frequency domain signals results in the frequency spectrum of the output signal, (h) & (i).  The Inverse DFT is then used
to find the output signal, (g).
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The FFT is a clever algorithm for rapidly calculating the DFT.  Using the FFT,
convolution by multiplication in the frequency domain can be hundreds of times
faster than conventional convolution.  Problems that take hours of calculation
time are reduced to only minutes.  This is why people get excited about the FFT,
and processing signals in the frequency domain.  The FFT will be presented in
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EQUATION 9-1
Multiplication of frequency
domain signals in rectangular
form: .Y[ f ] ' X[ f ] × H [ f ]

ReY [ f ] ' ReX [ f ] ReH [ f ] & ImX [ f ] ImH [ f ]

ImY [ f ] ' ImX [ f ] ReH [ f ] % ReX [ f ] ImH [ f ]

EQUATION 9-2
Division of frequency domain
signals in rectangular form,
where: .H [ f ] ' Y[ f ] / X[ f ]

ReH [ f ] '
ReY [ f ] ReX [ f ] % ImY [ f ] ImX [ f ]

ReX [ f ]2 % ImX [ f ]2

ImH [ f ] '
ImY [ f ] ReX [ f ] & ReY [ f ] ImX [ f ]

ReX [ f ]2 % ImX [ f ]2

Chapter 12, and the method of FFT convolution in Chapter 18.  For now, focus
on how signals are convolved by frequency domain multiplication. 

To start,  we need to define how to multiply one frequency domain signal by
another, i.e., what it means to write: .  In polar form,  theX [ f ] × H[ f ] ' Y[ f ]
magnitudes are multiplied: , and the phasesMag Y[ f ] ' MagX [ f ] × MagH [ f ]
are added: .  To understand this, imaginePhaseY[ f ] ' PhaseX [ f ] % PhaseH[ f ]
a cosine wave entering a system with some amplitude and phase.  Likewise, the
output signal is also a cosine wave with some amplitude and phase.  The polar
form of the frequency response directly describes how the two amplitudes are
related and how the two phases are related. 

When frequency domain multiplication is carried out in rectangular form there
are cross terms between the real and imaginary parts.  For example, a sine
wave entering the system can produce both cosine and sine waves in the output.
To multiply frequency domain signals in rectangular notation:

Focus on understanding multiplication using polar notation, and the idea of
cosine waves passing through the system.  Then simply accept that these more
elaborate  equations result when the same operations are carried out in
rectangular form.  For instance, let's look at the division of one frequency
domain signal by another.  In polar form, the division of frequency domain
signals is achieved by the inverse operations we used for multiplication.  To
calculate: , divide the magnitudes and subtract the phases,H [ f ] ' Y[ f ] / X [ f ]
i.e., , .Mag H[ f ] ' MagY[ f ] / MagX [ f ] PhaseH[ f ] ' PhaseY[ f ] & PhaseX[ f ]
In rectangular form this becomes:

Now back to frequency domain convolution.  You may have noticed that we
cheated slightly in Fig. 9-8.  Remember, the convolution of an N point signal
with an M point impulse response results in an  point output signal.N%M&1
We cheated by making the last part of the input signal all zeros to allow this
expansion to occur.   Specifically, (a) contains 453 nonzero samples, and (b)
contains 60 nonzero samples.  This means the convolution of the two, shown
in (c), can  fit comfortably in the 512 points provided.



Chapter 9- Applications of the DFT 183

Sample number
0 64 128 192 256

-2

-1

0

1

2

255

a.  Input signal

Sample number
0 64 128 192 256

-2

-1

0

1

2

255

b.  Impulse response

Sample number
0 64 128 192 256

-20

-15

-10

-5

0

5

10

15

20

c.  Convolution of (a) and (b)

305255

Sample number
0 256 512 768

-20

-15

-10

-5

0

5

10

15

20

767

d.  Overlap of adjecent periods

Sample number
0 64 128 192 256

-20

-15

-10

-5

0

5

10

15

20

overlap

255

e.  Circular convolution

A
m

pl
itu

de

FIGURE 9-9
Circular convolution.  A 256 sample signal, (a), convolved with a 51 sample impulse response, (b), results in
a 306 sample signal, (c). If this convolution is performed in the frequency domain using 256 point DFTs, the
306 points in the correct convolution cannot fit into the 256 samples provided.  As shown in (d),  samples 256
through 305 of the output signal are pushed into the next period to the right, where they add to the beginning
of the next period's signal.  Figure (e) is a single period of the resulting signal.  
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Now consider the more general case in Fig. 9-9.  The input signal, (a), is 256
points long, while the impulse response, (b), contains 51 nonzero points.  This
makes the convolution of the two signals 306 samples long, as shown in (c).
The problem is, if we use frequency domain multiplication to perform the
convolution, there are only 256 samples allowed in the output signal.   In other
words,  256 point DFTs are used to move (a) and (b) into the frequency
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domain.  After the multiplication, a 256 point Inverse DFT is used to find the
output signal.   How do you squeeze 306 values of the correct signal into the
256 points provided by the frequency domain algorithm?  The answer is, you
can't!  The 256 points end up being a distorted version of the correct signal.
This process is called circular convolution.  It is important because you want
to avoid it. 

To understand circular convolution, remember that an N point DFT views the
time domain as being an infinitely long periodic signal, with N samples per
period.  Figure (d) shows three periods of how the DFT views the output signal
in this example.  Since , each period consists of 256 points: 0-255,N ' 256
256-511, and 512-767.  Frequency domain convolution tries to place the 306
point correct output signal, shown in (c), into each of these 256 point periods.
This results in 49 of the samples being pushed into the neighboring period to
the right, where they overlap with the samples that are legitimately there.
These overlapping sections add, resulting in each of the periods appearing as
shown in (e), the circular convolution.

Once the nature of circular convolution is understood, it is quite easy to avoid.
Simply pad each of the signals being convolved with enough zerosto allow the
output signal room to handle the  points in the correct convolution.N%M&1
For example, the signals in (a) and (b) could be padded with zeros to make
them 512 points long, allowing the use of 512 point DFTs. After the frequency
domain convolution, the output signal would consist of 306 nonzero samples,
plus 206 samples with a value of zero.  Chapter 18 explains this procedure in
detail. 

Why is it called circular convolution?  Look back at Fig. 9-9d and examine the
center period, samples 256 to 511.  Since all of the periods are the same, the
portion of the signal that flows out of this period to the right, is the same that
flows into this period from the left.  If you only consider a single period, such
as in (e), it appears that the right side of the signal is somehow connected to
the left side.  Imagine a snake biting its own tail; sample 255 is located next
to sample 0, just as sample 100 is located next to sample 101.  When a portion
of the signal exits to the right, it magically reappears on the left.  In other
words, the N point time domain behaves as if it were circular. 

In the last chapter we posed the question: does it really matter if the  DFT's
time domain is viewed as being N points, rather than an infinitely long
periodic signal of period N?  Circular convolution is an example where it
does matter.  If the time domain signal is understood to be periodic, the
distortion encountered in circular convolution can be simply explained as
the signal expanding from one period to the next.  In comparison, a rather
bizarre conclusion is reached if only N points of the time domain are
considered.  That is, frequency domain convolution acts as if the time
domain is somehow wrapping into a circular ring with sample 0 being
positioned next to sample N-1. 


