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CHAPTER

7

EQUATION 7-1
The delta function is the identity for
convolution. Any signal convolved with
a delta function is left unchanged.

x[n ]( *[n ] ' x[n ]

Properties of Convolution

A linear system's characteristics are completely specified by the system's impulse response, as
governed by the mathematics of convolution.  This is the basis of many signal processing
techniques.  For example:  Digital filters are created by designing an appropriate impulse
response.  Enemy aircraft are detected with radar by analyzing a measured impulse response.
Echo suppression in long distance telephone calls is accomplished by creating an impulse
response that counteracts the impulse response of the reverberation.  The list goes on and on.
This chapter expands on the properties and usage of convolution in several areas.  First, several
common impulse responses are discussed.  Second, methods are presented for dealing with
cascade and parallel combinations of linear systems.  Third, the technique of correlation is
introduced.  Fourth, a nasty problem with convolution is examined, the computation time can be
unacceptably long using conventional algorithms and computers.   

Common Impulse Responses

Delta Function 
The simplest impulse response is nothing more that a delta function, as shown
in Fig. 7-1a.  That is, an impulse on the input produces an identical impulse on
the output.  This means that all signals are passed through the system without
change.  Convolving any signal with a delta function results in exactly the
same signal.  Mathematically, this is written:

This property makes the delta function the identity for convolution.  This is
analogous to zero being the identity for addition , and one being the(a% 0 ' a )
identity for multiplication .  At first glance, this type of system(a×1 ' a )
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EQUATION 7-2
A system that amplifies or attenuates has
a scaled delta function for an impulse
response.  In this equation, k determines
the amplification or attenuation.

x [n ] ( k*[n ] ' kx[n ]

EQUATION 7-3
A relative shift between the input and
output signals corresponds to an impulse
response that is a shifted delta function.
The variable, s, determines the amount of
shift in this equation. 

x [n ]( *[n% s ] ' x[n% s]

may seem trivial and uninteresting.  Not so!  Such systems are the ideal for
data storage, communication and measurement.  Much of DSP is concerned
with passing information through systems without change or degradation.

Figure 7-1b shows a slight modification to the delta function impulse
response.  If the delta function is made larger or smaller in amplitude, the
resulting system is an amplifier or attenuator, respectively.  In equation
form, amplification results if k is greater than one, and attenuation results
if k is less than one:

The impulse response in Fig. 7-1c is a delta function with a shift.  This results
in a system that introduces an identical shift between the input and output
signals.  This could be described as a signal delay, or a signal advance,
depending on the direction of the shift.  Letting the shift be represented by the
parameter, s, this can be written as the equation:

Science and engineering are filled with cases where one signal is a shifted
version of another.  For example, consider a radio signal transmitted from
a remote space probe, and the corresponding signal received on the earth.
The time it takes the radio wave to propagate over the distance causes a
delay between the transmitted and received signals.  In biology, the
electrical signals in adjacent nerve cells are shifted versions of each other,
as determined by the time it takes an action potential to cross the synaptic
junction that connects the two.

Figure 7-1d shows an impulse response composed of a delta function plus a
shifted and scaled delta function.  By superposition, the output of this system
is the input signal plus a delayed version of the input signal, i.e., an echo.
Echoes are important in many DSP applications.  The addition of echoes is a
key part in making audio recordings sound natural and pleasant.  Radar and
sonar analyze echoes to detect aircraft and submarines.  Geophysicists use
echoes to find oil.  Echoes are also very important in telephone networks,
because you want to avoid them.
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FIGURE 7-1
Simple impulse responses using shifted and scaled delta functions.

a. Identity
The delta function is the identity for
convolution. Convolving a signal with
the delta function leaves the signal
unchanged. This is the goal of systems
that transmit or store signals. 

b. Amplification & Attenuation
Increasing or decreasing the amplitude
of the delta function forms an impulse
response that amplifies or attenuates,
respectively. This impulse response will
amplify the signal by 1.6.

c. Shift
Shifting the delta function produces a
corresponding shift between the input
and output signals.  Depending on the
direction, this can be called a delay or
an advance.  This impulse response
delays the signal by four samples.

d. Echo
A delta function plus a shifted and
scaled delta function results in an echo
being added to the original signal. In
this example, the echo is delayed by four
samples and has an amplitude of 60% of
the original signal.
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Calculus-like Operations
Convolution can change discrete signals in ways that resemble integration and
differentiation.  Since the terms "derivative" and "integral" specifically refer
to operations on continuous signals, other names are given to their discrete
counterparts.  The discrete operation that mimics the first derivative is called
the first difference.  Likewise,  the discrete form of the integral is called the
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EQUATION 7-4
Calculation of the first difference.  In
this relation,  is the original signal,x [n]
and  is the first difference. y [n]

y[n ] ' x [n ] & x [n&1]
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FIGURE 7-2
Impulse responses that mimic calculus operations.

a. First Difference
This is the discrete version of the first
derivative. Each sample in the output
signal is equal to the difference between
adjacent samples in the input signal. In
other words, the output signal is the
slope of the input signal.

b. Running Sum
The running sum is the discrete version
of the integral.  Each sample in the
output signal is equal to the sum of all
samples in the input signal to the left.
Note that the impulse response extends
to infinity, a rather nasty feature.
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running sum.  It is also common to hear these operations called the discrete
derivative and the discrete integral, although mathematicians frown when
they hear these informal terms used.
  
Figure 7-2 shows the impulse responses that implement the first difference and
the running sum.  Figure 7-3 shows an example using these operations.  In 7-
3a, the original signal is composed of several sections with varying slopes.
Convolving this signal with the first difference impulse response produces the
signal in Fig. 7-3b.  Just as with the first derivative, the amplitude of each
point in the first difference signal is equal to the slope at the corresponding
location in the original signal.  The running sum is the inverse operation of the
first difference.   That is, convolving the signal in (b), with the running sum's
impulse response, produces the signal in (a).

These impulse responses are simple enough that a full convolution program is
usually not needed to implement them.  Rather, think of them in the alternative
mode: each sample in the output signal is a sum of weighted samples from the
input.  For instance, the first difference can be calculated: 

That is, each sample in the output signal is equal to the difference between two
adjacent samples in the input signal.  For instance, .  Ity[40] ' x[40] & x[39]
should be mentioned that this is not the only way to define a discrete
derivative.  Another common method is to define the slope symmetrically
around the point being examined, such as:  . y[n] ' ( x[n%1]& x[n&1] )/2
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FIGURE 7-3
Example of calculus-like operations.  The
signal in (b) is the first difference of the
signal in (a).  Correspondingly, the signal is
(a) is the running sum of the signal in (b).
These processing methods are used with
discrete signals the same as differentiation
and integration are used with continuous
signals.
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EQUATION 7-5
Calculation of the running sum.  In this
relation,  is the original signal, and x [n] y [n]
is the running sum.

y[n ] ' x [n ] % y [n&1]

Using this same approach, each sample in the running sum can be calculated
by summing all points in the original signal to the left of the sample's location.
For instance, if  is the running sum of , then sample  is found byy[n] x[n] y[40]
adding samples  through .  Likewise, sample  is found by addingx[0] x[40] y[41]
samples  through .  Of course, it would be very inefficient to calculatex[0] x[41]
the running sum in this manner.  For example, if  has already beeny[40]
calcula ted ,   can be calcula ted with  only a  s ingle  addi t ion:y[41]

.  In equation form:y[41] ' x[41]% y[40]

Relations of this type are called recursion equations or difference
equations.  We will revisit them in Chapter 19.  For now, the important idea
to understand is that these relations are identical to convolution using the
impulse responses of Fig. 7-2.   Table 7-1 provides computer programs that
implement these calculus-like operations.
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100  'Calculation of the running sum
110  Y[0] = X[0]
120  FOR I% = 1 TO N%-1
130    Y[I%] = Y[I%-1] + X[I%]
140  NEXT I%

100  'Calculation of the First Difference
110  Y[0] = 0
120  FOR I% = 1 TO N%-1
130    Y[I%] = X[I%] - X[I%-1]
140  NEXT I%

Table 7-1
Programs for calculating the first difference and running sum. The original signal is held in X[ ], and the
processed signal (the first difference or running sum) is held in Y[ ].  Both arrays run from 0 to N%-1.   
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FIGURE 7-4
Typical low-pass filter kernels.  Low-pass
filter kernels are formed from a group of
adjacent positive points that provide an
averaging (smoothing) of the signal.  As
discussed in later chapters, each of these filter
kernels is best for a particular purpose.  The
exponential, (a), is the simplest recursive
filter.  The rectangular pulse, (b), is best at
reducing noise while maintaining edge
sharpness.  The sinc function in (c), a curve of
the form: , is used to separate onesin(x)/(x)
band of frequencies from another.   
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Low-pass and High-pass Filters
The design of digital filters is covered in detail in later chapters.  For now, be
satisfied to understand the general shape of low-pass and high-pass filter
kernels (another name for a filter's impulse response).  Figure 7-4 shows
several common low-pass filter kernels.   In general, low-pass filter kernels are
composed of a group of adjacent positive points.  This results in each sample
in the output signal being a weighted average of many adjacent points from the
input signal.  This averaging smoothes the signal, thereby removing high-
frequency components.   As shown by the sinc function in (c), some low-pass
filter kernels include a few negative valued samples in the tails.  Just as in
analog electronics, digital low-pass filters are used for noise reduction, signal
separation, wave shaping, etc.
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FIGURE 7-5
Typical high-pass filter kernels.  These are
formed by subtracting the corresponding low-
pass filter kernels in Fig. 7-4 from a delta
function. The distinguishing characteristic of
high-pass filter kernels is a spike surrounded
by many adjacent negative samples. 
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The cutoff frequency of the filter is changed by making filter kernel wider or
narrower.  If a low-pass filter has a gain of one at DC (zero frequency), then
the sum of all of the points in the impulse response must be equal to one.  As
illustrated in (a) and (c),  some filter kernels theoretically extend to infinity
without dropping to a value of zero.  In actual practice, the tails are truncated
after a certain number of samples, allowing it to be represented by a finite
number of points.  How else could it be stored in a computer?

Figure 7-5 shows three common high-pass filter kernels, derived from the
corresponding low-pass filter kernels in Fig. 7-4.  This is a common strategy
in filter design: first devise a low-pass filter and then transform it to what you
need, high-pass, band-pass, band-reject, etc.  To understand the low-pass to
high-pass transform, remember that a delta function impulse response passes
the entire signal, while a low-pass impulse response passes only the low-
frequency components.  By superposition, a filter kernel consisting of a delta
function minus the low-pass filter kernel will pass the entire signal minus the
low-frequency components.   A high-pass filter is born!   As shown in Fig. 7-5,
the delta function is usually added at the center of symmetry, or sample zero
if the filter kernel is not symmetrical.  High-pass filters have zero gain at DC
(zero frequency), achieved by making the sum of all the points in the filter
kernel equal to zero.
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FIGURE 7-6
Examples of causal signals. An impulse
response, or any signal, is said to be causal if
all negative numbered samples have a value of
zero.  Three examples are shown here.  Any
noncausal signal with a finite number of
points can be turned into a causal signal
simply by shifting.

Sample number
-20 -15 -10 -5 0 5 10 15 20

-0.1

0.0

0.1

0.2

0.3

0.4

c.  Noncausal

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

Causal and Noncausal Signals
Imagine a simple analog electronic circuit.  If you apply a short pulse to the
input, you will see a response on the output.  This is the kind of cause and
effect that our universe is based on.  One thing we definitely know: any effect
must happen after the cause.  This is a basic characteristic of what we call
time.  Now compare this to a DSP system that changes an input signal into an
output signal, both stored in arrays in a computer.  If this mimics a real world
system, it must follow the same principle of causality as the real world does.
For example, the value at sample number eight in the input signal can only
affect sample number eight or greater in the output signal.  Systems that
operate in this manner are said to be causal.  Of course, digital processing
doesn't necessarily have to function this way.  Since both the input and output
signals are arrays of numbers stored in a computer, any of the input signal
values can affect any of the output signal values. 

As shown by the examples in Fig. 7-6, the impulse response of a causal system
must have a value of zero for all negative numbered samples.  Think of this
from the input side view of convolution.  To be causal, an impulse in the input
signal at sample number n must only affect those points in the output signal
with a sample number of n or greater.   In common usage, the term causal is
applied to any signal where all the negative numbered samples have a value of
zero, whether it is an impulse response or not.
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FIGURE 7-7
Examples of phase linearity.  Signals that have
a left-right symmetry are said to be linear
phase.  If the axis of symmetry occurs at
sample number zero, they are additionally said
to be zero phase.  Any linear phase signal can
be transformed into a zero phase signal simply
by shifting.  Signals that do not have a left-
right symmetry are said to be nonlinear
phase.  Do not confuse these terms with the
linear in linear systems.  They are completely
different concepts.
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Zero Phase, Linear Phase, and Nonlinear Phase
As shown in Fig. 7-7, a signal is said to be zero phase if it has left-right
symmetry around sample number zero.  A signal is said to be linear phase if
it has left-right symmetry, but around some point other than zero.  This means
that any linear phase signal can be changed into a zero phase signal simply by
shifting left or right.   Lastly, a signal is said to be nonlinear phase if it does
not have left-right symmetry.

You are probably thinking that these names don't seem to follow from their
definitions. What does phase have to do with symmetry?  The answer lies in
the frequency spectrum, and will be discussed in more detail in later chapters.
Briefly, the frequency spectrum of any signal is composed of two parts, the
magnitude and the phase.  The frequency spectrum of a signal that is
symmetrical around zero has a phase that is zero.  Likewise, the frequency
spectrum of a signal that is symmetrical around some nonzero point has a phase
that is a straight line, i.e., a linear phase.  Lastly, the frequency spectrum of a
signal that is not symmetrical has a phase that is not a straight line, i.e., it has
a nonlinear phase.

A special note about the potentially confusing terms: linear and nonlinear
phase.  What does this have to do the concept of system linearity discussed in
previous chapters?  Absolutely nothing!  System linearity is the broad concept
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EQUATION 7-6
The commutative property of convolution.
This states that the order in which signals
are convolved can be exchanged. 

a [n ]( b [n ] ' b [n ]( a [n ]

b[n]a[n] y[n]

a[n]b[n] y[n]

IF

THEN

FIGURE 7-8
The commutative property in system theory.  The commutative property of convolution allows the
input signal and the impulse response of a system to be exchanged without changing the output.
While interesting, this usually has no physical significance.  (A signal appearing inside of a box, such
as b[n] and a[n] in this figure, represent the impulse response of the system).

that nearly all of DSP is based on (superposition, homogeneity, additivity, etc).
Linear and nonlinear phase mean that the phase is, or is not, a straight line.
In fact, a system must be linear even to say that the phase is zero, linear, or
nonlinear. 

Mathematical Properties

Commutative Property 
The commutative property for convolution is expressed in mathematical form:

In words, the order in which two signals are convolved makes no difference;
the results are identical.   As shown in Fig. 7-8, this has a strange meaning for
system theory.  In any linear system, the input signal and the system's impulse
response can be exchanged without changing the output signal.  This is
interesting, but usually doesn't have any physical meaning.  The input signal
and the impulse response are very different things.  Just because the
mathematics allows you to do something, doesn't mean that it makes sense to
do it.  For example, suppose you make: $10/hour × 2,000 hours/year =
$20,000/year.  The commutative property for multiplication provides that you
can make the same annual salary by only working 10 hours/year at $2000/hour.
Let's see you convince your boss that this is meaningful!  In spite of this, the
commutative property sees great use in DSP for manipulating equations, just
as in ordinary algebra.
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EQUATION 7-7
The associative property of con-
volution describes how three or
more signals are convolved. 

(a [n ]( b [n ] ) ( c[n ] ' a [n ] ( ( b [n ]( c[n ] )

IF

THEN

h1[n]x[n] h2[n] y[n]

h2[n]x[n] h1[n] y[n]

ALSO

h1[n]    h2[n]x[n] y[n]

FIGURE 7-9
The associative property in system theory.  The associative property provides two important
characteristics of cascaded linear systems.  First, the order of the systems can be rearranged
without changing the overall operation of the cascade.  Second, two or more systems in a cascade
can be replaced by a single system.  The impulse response of the replacement system is found by
convolving the impulse responses of the stages being replaced. 

Associative Property
Is it possible to convolve three or more signals?  The answer is yes, and the
associative property describes how:  convolve two of the signals to produce an
intermediate signal, then convolve the intermediate signal with the third signal.
The associative property provides that the order of the convolutions doesn't
matter.  As an equation:

The associative property is used in system theory to describe how cascaded
systems behave.  As shown in Fig. 7-9, two or more systems are said to be in
a cascade if the output of one system is used as the input for the next system.
From the associative property, the order of the systems can be rearranged
without changing the overall response of the cascade.  Further, any number of
cascaded systems can be replaced with a single system.  The impulse response
of the replacement system is found by convolving the impulse responses of all
of the original systems.
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EQUATION 7-8
The distributive property of con-
volution describes how parallel
systems are analyzed.   

a [n ](b [n ] % a [n ]( c[n ] ' a [n ] ( (b [n ]% c [n ] )

IF

THEN

x[n] y[n]

h1[n] + h2[n]x[n] y[n]

h1[n]

h2[n]

FIGURE 7-10
The distributive property in system theory.  The distributive property shows that parallel
systems with added outputs can be replaced with a single system.  The impulse response
of the replacement system is equal to the sum of the impulse responses of all the original
systems. 

Distributive Property
In equation form, the distributive property is written:

The distributive property describes the operation of parallel systems with
added outputs.  As shown in Fig. 7-10, two or more systems can share the
same input, , and have their outputs added to produce .  Thex[n] y[n]
distributive property allows this combination of systems to be replaced with a
single system, having an impulse response equal to the sum of the impulse
responses of the original systems. 

Transference between the Input and Output
Rather than being a formal mathematical property, this is a way of thinking
about a common situation in signal processing.  As illustrated in Fig. 7-11,
imagine a linear system receiving an input signal, , and generating anx[n]
output signal, .  Now suppose that the input signal is changed in somey[n]
linear way, resulting in a new input signal, which we will call .  Thisx 3[n]
results in a new output signal, .  The question is, how does the change iny 3[n]
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h[n]x[n] y[n]

h[n]x [n] y [n]

IF

THEN

Linear
Change

SameLinear
Change

FIGURE 7-11
Tranference between the input and output.  This is a way of thinking about a common
situation in signal processing.  A linear change made to the input signal results in the same
linear change being made to the output signal. 

the input signal relate to the change in the output signal?  The answer is:
the output signal is changed in exactly the same linear way that the input
signal was changed.  For example, if the input signal is amplified by a
factor of two, the output signal will also be amplified by a factor of two.
If the derivative is taken of the input signal, the derivative will also be
taken of the output signal.  If the input is filtered in some way, the output
will be filtered in an identical manner.   This can easily be proven by using
the associative property.

The Central Limit Theorem
The Central Limit Theorem is an important tool in probability theory because
it mathematically explains why the Gaussian probability distribution is
observed so commonly in nature.  For example: the amplitude of thermal noise
in electronic circuits follows a Gaussian distribution; the cross-sectional
intensity of a laser beam is Gaussian; even the pattern of  holes around a dart
board bull's eye is Gaussian.  In its simplest form, the Central Limit Theorem
states that a Gaussian distribution results when the observed variable is the
sum of many random processes.  Even if the component processes do not have
a Gaussian distribution, the sum of them will. 

The Central Limit Theorem has an interesting implication for convolution.  If
a pulse-like signal is convolved with itself many times, a Gaussian is
produced.  Figure 7-12 shows an example of this.  The signal in (a) is an
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FIGURE 7-12
Example of convolving a pulse waveform
with itself. The Central Limit Theorem shows
that a Gaussian waveform is produced when
an arbitrary shaped pulse is convolved with
itself many times.  Figure (a) is an example
pulse.  In (b), the pulse is convolved with
itself once, and begins to appear smooth and
regular.  In (c), the pulse is convolved with
itself three times, and closely approximates a
Gaussian.   
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irregular pulse,  purposely chosen to be very unlike a Gaussian.  Figure (b)
shows the result of convolving this signal with itself one time.  Figure (c)
shows the result of convolving this signal with itself three times.  Even with
only three convolutions, the waveform looks very much like a Gaussian.  In
mathematics jargon, the procedure converges to a Gaussian very quickly.  The
width of the resulting Gaussian (i.e., F in Eq. 2-7 or 2-8) is equal to the width
of the original pulse (expressed as F in Eq. 2-7) multiplied by the square root
of the number of convolutions.

Correlation

The concept of correlation can best be presented with an example.  Figure 7-13
shows the key elements of a radar system.  A specially designed antenna
transmits a short burst of radio wave energy in a selected direction.  If the
propagating wave strikes an object, such as the helicopter in this illustration,
a small fraction of the energy is reflected back toward a radio receiver located
near the transmitter. The transmitted pulse is a specific shape that we have
selected, such as the triangle shown in this example.  The received signal will
consist of two parts: (1) a shifted and scaled version of the transmitted pulse,
and (2) random noise, resulting from interfering radio waves, thermal noise in
the electronics, etc.  Since radio signals travel at a known rate, the speed of
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TRANSMIT RECEIVE
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FIGURE 7-13
Key elements of a radar system. Like other
echo location systems, radar transmits a
short pulse of energy that is reflected by
objects being examined.  This makes the
received waveform a shifted version of the
transmitted waveform, plus random noise.
Detection of a known waveform in a noisy
signal is the fundamental problem in echo
location. The answer to this problem is
correlation.
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light, the shift between the transmitted and received pulse is a direct measure
of the distance to the object being detected.  This is the problem:  given a
signal of some known shape, what is the best way to determine where (or if)
the signal occurs in another signal.  Correlation is the answer. 

Correlation is a mathematical operation that is very similar to convolution.
Just as with convolution, correlation uses two signals to produce a third
signal.  This third signal is called the cross-correlation of the two input
signals.  If a signal is correlated with itself, the resulting signal is instead
called the autocorrelation.  The convolution machine was presented in the
last chapter to show how convolution is performed.   Figure 7-14 is a similar



The Scientist and Engineer's Guide to Digital Signal Processing138

illustration of a correlation machine.  The received signal, , and thex[n]
cross-correlation signal, , are fixed on the page.  The waveform we arey[n]
looking for, , commonly called the target signal, is contained within thet[n]
correlation machine.  Each sample in  is calculated by moving they[n]
correlation machine left or right until it points to the sample being worked on.
Next, the indicated samples from the received signal fall into the correlation
machine, and are multiplied by the corresponding points in the target signal.
The sum of these products then moves into the proper sample in the cross-
correlation signal.  

The amplitude of each sample in the cross-correlation signal is a measure of
how much the received signal resembles the target signal, at that location. This
means that a peak will occur in the cross-correlation signal for every target
signal that is present in the received signal.  In other words, the value of the
cross-correlation is maximized when the target signal is aligned with the same
features in the received signal.  

What if the target signal contains samples with a negative value?  Nothing
changes.  Imagine that the correlation machine is positioned such that the target
signal is perfectly aligned with the matching waveform in the received signal.
As samples from the received signal fall into the correlation machine, they are
multiplied by their matching samples in the target signal.  Neglecting noise, a
positive sample will be multiplied by itself, resulting in a positive number.
Likewise, a negative sample will be multiplied by itself, also resulting in a
positive number.  Even if the target signal is completely negative, the peak in
the cross-correlation will still be positive.

If there is noise on the received signal, there will also be noise on the cross-
correlation signal.  It is an unavoidable fact that random noise looks a
certain amount like any target signal you can choose.  The noise on the
cross-correlation signal is simply measuring this similarity.  Except for this
noise, the peak generated in the cross-correlation signal is symmetrical
between its left and right.  This is true even if the target signal isn't
symmetrical.  In addition, the width of the peak is twice the width of the
target signal.  Remember, the cross-correlation is trying to detect the target
signal, not recreate it.  There is no reason to expect that the peak will even
look like the target signal.   

Correlation is the optimal technique for detecting a known waveform in
random noise.  That is, the peak is higher above the noise using correlation
than can be produced by any other linear system.  (To be perfectly correct,
it is only optimal for random white noise).  Using correlation to detect a
known waveform is frequently called matched filtering.  More on this in
Chapter 17.

The correlation machine and convolution machine are identical, except for
one small difference.  As discussed in the last chapter, the signal inside of
the convolution machine is flipped left-for-right.  This means that samples
numbers:  run from the right to the left.   In the correlation machine1, 2, 3þ
this flip doesn't take place, and the samples run in the normal direction.  
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FIGURE 7-14
The correlation machine. This is a flowchart showing how the cross-correlation of two signals is calculated.  In this
example,  is the cross-correlation of  and . The dashed box is moved left or right so that its output points aty [n] x [n] t [n]
the sample being calculated in .  The indicated samples from  are multiplied by the corresponding samples in ,y [n] x [n] t [n]
and the products added.  The correlation machine is identical to the convolution machine (Figs. 6-8 and 6-9), except that
the signal inside of the dashed box is not reversed.  In this illustration, the only samples calculated in  are where y [n] t [n]
is fully immersed in .x [n]
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Since this signal reversal is the only difference between the two operations, it
is possible to represent correlation using the same mathematics as convolution.
This requires preflipping one of the two signals being correlated, so that the
left-for-right flip inherent in convolution is canceled.  For instance, when a[n]
and ,  are convolved to produce ,  the equation is  writ ten:b[n] c[n]

.  In comparison, the cross-correlation of  and  cana[n ]( b [n] ' c [n] a[n] b[n]
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be written: .  That is, flipping  left-for-right isa[n ]( b [&n] ' c [n] b [n]
accomplished by reversing the sign of the index, i.e., .b [&n]

Don't let the mathematical similarity between convolution and correlation fool
you; they represent very different DSP procedures.  Convolution is the
relationship between a system's input signal, output signal, and impulse
response.  Correlation is a way to detect a known waveform in a noisy
background.  The similar mathematics is only a convenient coincidence. 

Speed

Writing a program to convolve one signal by another is a simple task, only
requiring a few lines of code.  Executing the program may be more painful.  The
problem is the large number of additions and multiplications required by the
algorithm, resulting in long execution times.  As shown by the programs in the
last chapter,  the time-consuming operation is composed of multiplying two
numbers and adding the result to an accumulator.  Other parts of the algorithm,
such as indexing the arrays, are very quick.  The multiply-accumulate is a basic
building block in DSP, and we will see it repeated in several other important
algorithms.  In fact, the speed of DSP computers is often specified by how long
it takes to preform a multiply-accumulate operation.  

If a signal composed of N samples is convolved with a signal composed of M
samples,  multiply-accumulations must be preformed.  This can be seenN×M
from the programs of the last chapter.  Personal computers of the mid 1990's
requires about one microsecond per multiply-accumulation (100 MHz Pentium
using single precision floating point, see Table 4-6).  Therefore, convolving a
10,000 sample signal with a 100 sample signal requires  about one second.  To
process a one million point signal with a 3000 point impulse response requires
nearly an hour.  A decade earlier (80286 at 12 MHz), this calculation would
have required three days!

The problem of excessive execution time is commonly handled in one of three
ways.  First, simply keep the signals as short as possible and use integers
instead of floating point.  If you only need to run the convolution a few times,
this will probably be the best trade-off between execution time and
programming effort.   Second, use a computer designed for DSP.  DSP
microprocessors are available with multiply-accumulate times of only a few
tens of nanoseconds.  This is the route to go if you plan to perform the
convolution many times, such as in the design of commercial products. 

The third solution is to use a better algorithm for implementing the convolution.
Chapter 17 describes a very sophisticated algorithm called FFT convolution.
FFT convolution produces exactly the same result as the convolution algorithms
presented in the last chapter; however, the execution time is dramatically
reduced.  For signals with thousands of samples, FFT convolution can be
hundreds of times faster.  The disadvantage is program complexity.  Even if
you are familiar with the technique, expect to spend several hours getting the
program to run.


