
67

CHAPTER

4
DSP Software

DSP applications are usually programmed in the same languages as other science and engineering
tasks, such as: C, BASIC and assembly. The power and versatility of C makes it the language
of choice for computer scientists and other professional programmers. On the other hand, the
simplicity of BASIC makes it ideal for scientists and engineers who only occasionally visit the
programming world. Regardless of the language you use, most of the important DSP software
issues are buried far below in the realm of whirling ones and zeros. This includes such topics as:
how numbers are represented by bit patterns, round-off error in computer arithmetic, the
computational speed of different types of processors, etc. This chapter is about the things you
can do at the high level to avoid being trampled by the low level internal workings of your
computer.

Computer Numbers

Digital computers are very proficient at storing and recalling numbers;
unfortunately, this process isn't without error. For example, you instruct your
computer to store the number: 1.41421356. The computer does its best, storing
the closest number it can represent: 1.41421354. In some cases this error is
quite insignificant, while in other cases it is disastrous. As another illustration,
a classic computational error results from the addition of two numbers with
very different values, for example, 1 and 0.00000001. We would like the
answer to be 1.00000001, but the computer replies with 1. An understanding
of how computers store and manipulate numbers allows you to anticipate and
correct these problems before your program spits out meaningless data.

These problems arise because a fixed number of bits are allocated to store each
number, usually 8, 16, 32 or 64. For example, consider the case where eight
bits are used to store the value of a variable. Since there are 28 = 256
possible bit patterns, the variable can only take on 256 different values. This
is a fundamental limitation of the situation, and there is nothing we can do
about it. The part we can control is what value we declare each bit pattern

The Scientist and Engineer's Guide to Digital Signal Processing68

to represent. In the simplest cases, the 256 bit patterns might represent the
integers from 0 to 255, 1 to 256, -127 to 128, etc. In a more unusual scheme,
the 256 bit patterns might represent 256 exponentially related numbers:

 Everyone accessing the data must understand1, 10, 100, 1000, þ, 10254, 10255.
what value each bit pattern represents. This is usually provided by an
algorithm or formula for converting between the represented value and the
corresponding bit pattern, and back again.

While many encoding schemes are possible, only two general formats have
become common, fixed point (also called integer numbers) and floating point
(also called real numbers). In this book's BASIC programs, fixed point
variables are indicated by the % symbol as the last character in the name, such
as: I%, N%, SUM%, etc. All other variables are floating point, for example:
X, Y, MEAN, etc. When you evaluate the formats presented in the next few
pages, try to understand them in terms of their range (the largest and smallest
numbers they can represent) and their precision (the size of the gaps between
numbers).

Fixed Point (Integers)

Fixed point representation is used to store integers, the positive and negative
whole numbers: . High level programs, such as C andþ&3,&2,&1, 0, 1, 2, 3,þ
BASIC, usually allocate 16 bits to store each integer. In the simplest case, the

 possible bit patterns are assigned to the numbers 0 through 65,535.216 ' 65,536
This is called unsigned integer format, and a simplified example is shown in
Fig. 4-1 (using only 4 bits per number). Conversion between the bit pattern
and the number being represented is nothing more than changing between base
2 (binary) and base 10 (decimal). The disadvantage of unsigned integer is that
negative numbers cannot be represented.

Offset binary is similar to unsigned integer, except the decimal values are
shifted to allow for negative numbers. In the 4 bit example of Fig. 4-1, the
decimal numbers are offset by seven, resulting in the 16 bit patterns
corresponding to the integer numbers -7 through 8. In this same manner,
a 16 bit representation would use 32,767 as an offset, resulting in a range
between -32,767 and 32,768. Offset binary is not a standardized format,
and you will find other offsets used, such 32,768. The most important use
of offset binary is in ADC and DAC. For example, the input voltage range
of -5v to 5v might be mapped to the digital numbers 0 to 4095, for a 12 bit
conversion.

Sign and magnitude is another simple way of representing negative integers.
The far left bit is called the sign bit, and is made a zero for positive numbers,
and a one for negative numbers. The other bits are a standard binary
representation of the absolute value of the number. This results in one wasted
bit pattern, since there are two representations for zero, 0000 (positive zero)
and 1000 (negative zero). This encoding scheme results in 16 bit numbers
having a range of -32,767 to 32,767.

Chapter 4- DSP Software 69

FIGURE 4-1
Common formats for fixed point (integer) representation. Unsigned integer is a simple binary format, but
cannot represent negative numbers. Offset binary and sign & magnitude allow negative numbers, but they are
difficult to implement in hardware. Two's complement is the easiest to design hardware for, and is the most
common format for general purpose computing.

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
00000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Decimal Bit Pattern

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000-7

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8

Decimal Bit Pattern

0111
0110
0101
0100
0011
0010
0001
0000
1000
1001
1010
1011
1100
1101
1110
1111-7

-6
-5
-4
-3
-2
-1
0
0
1
2
3
4
5
6
7

Decimal Bit Pattern

0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
1000-8

-7

-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

Decimal Bit Pattern

UNSIGNED
INTEGER

OFFSET
BINARY

SIGN AND
MAGNITUDE

TWO'S
COMPLEMENT

-6

16 bit range:
0 to 65,535

16 bit range
-32,767 to 32,768

16 bit range
-32,767 to 32,767

16 bit range
-32,768 to 32,767

These first three representations are conceptually simple, but difficult to
implement in hardware. Remember, when A=B+C is entered into a computer
program, some hardware engineer had to figure out how to make the bit pattern
representing B, combine with the bit pattern representing C, to form the bit
pattern representing A.

Two's complement is the format loved by hardware engineers, and is how
integers are usually represented in computers. To understand the encoding
pattern, look first at decimal number zero in Fig. 4-1, which corresponds to a
binary zero, 0000. As we count upward, the decimal number is simply the
binary equivalent (0 = 0000, 1 = 0001, 2 = 0010, 3 = 0011, etc.). Now,
remember that these four bits are stored in a register consisting of 4 flip-flops.
If we again start at 0000 and begin subtracting, the digital hardware
automatically counts in two's complement: 0 = 0000, -1 = 1111, -2 = 1110, -3
= 1101, etc. This is analogous to the odometer in a new automobile. If driven
forward, it changes: 00000, 00001, 00002, 00003, and so on. When driven
backwards, the odometer changes: 00000, 99999, 99998, 99997, etc.

Using 16 bits, two's complement can represent numbers from -32,768 to
32,767. The left most bit is a 0 if the number is positive or zero, and a 1 if the
number is negative. Consequently, the left most bit is called the sign bit, just
as in sign & magnitude representation. Converting between decimal and two's
complement is straightforward for positive numbers, a simple decimal to binary

The Scientist and Engineer's Guide to Digital Signal Processing70

EQUATION 4-1
Equation for converting a bit pattern into a
floating point number. The number is
represented by v, S is the value of the sign
bit, M is the value of the mantissa, and E is
the value of the exponent.

v ' (&1)S × M × 2E &127

conversion. For negative numbers, the following algorithm is often used:
(1) take the absolute value of the decimal number, (2) convert it to binary,
(3) complement all of the bits (ones become zeros and zeros become ones),
(4) add 1 to the binary number. For example: -5 6 5 6 0101 6 1010 6
1011. Two's complement is hard for humans, but easy for digital
electronics.

Floating Point (Real Numbers)

The encoding scheme for floating point numbers is more complicated than for
fixed point. The basic idea is the same as used in scientific notation, where a
mantissa is multiplied by ten raised to some exponent. For instance,

 where 5.4321 is the mantissa and 6 is the exponent. Scientific5.4321 × 106,
notation is exceptional at representing very large and very small numbers. For
example: the number of atoms in the earth, or the1.2 × 1050, 2.6 × 10&23,
distance a turtle crawls in one second, compared to the diameter of our galaxy.
Notice that numbers represented in scientific notation are normalized so that
there is only a single nonzero digit left of the decimal point. This is achieved
by adjusting the exponent as needed.

Floating point representation is similar to scientific notation, except
everything is carried out in base two, rather than base ten. While several
similar formats are in use, the most common is ANSI/IEEE Std. 754-1985.
This standard defines the format for 32 bit numbers called single precision,
as well as 64 bit numbers called double precision. As shown in Fig. 4-2,
the 32 bits used in single precision are divided into three separate groups:
bits 0 through 22 form the mantissa, bits 23 through 30 form the exponent,
and bit 31 is the sign bit. These bits form the floating point number, v, by
the following relation:

The term: , simply means that the sign bit, S, is 0 for a positive number(&1)S

and 1 for a negative number. The variable, E, is the number between 0 and
255 represented by the eight exponent bits. Subtracting 127 from this number
allows the exponent term to run from to In other words, the2&127 2128.
exponent is stored in offset binary with an offset of 127.

The mantissa, M, is formed from the 23 bits as a binary fraction. For
example, the decimal fraction: 2.783, is interpreted: .2 % 7/10 % 8/100 % 3/1000
The binary fraction: 1.0101, means: . Floating point1 % 0/2 % 1/4 % 0/8 % 1/16
numbers are normalized in the same way as scientific notation, that is, there
is only one nonzero digit left of the decimal point (called a binary point in

Chapter 4- DSP Software 71

FIGURE 4-2
Single precision floating point storage format. The 32 bits are broken into three separate parts, the
sign bit, the exponent and the mantissa. Equations 4-1 and 4-2 shows how the represented number
is found from these three parts. MSB and LSB refer to “most significant bit” and “least significant
bit,” respectively.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MANTISSAEXPONENTSIGN

MSB LSB MSB LSB

23 bits8 bits1 bit

0 00000111 11000000000000000000000

1 10000001 01100000000000000000000

+ 7 0.75

129 0.375

Example 1

Example 2

&1.375 × 2(129&127) ' &5.500000

%1.75 × 2(7&127) ' %1.316554 × 10&36

EQUATION 4-2
Algorithm for converting the bit pattern into
the mantissa, M, used in Eq. 4-1.

M ' 1.m22m21m20m19 @@@ m2m1m0

base 2). Since the only nonzero number that exists in base two is 1, the
leading digit in the mantissa will always be a 1, and therefore does not need to
be stored. Removing this redundancy allows the number to have an additional
one bit of precision. The 23 stored bits, referred to by the notation:

, form the mantissa according to:m22, m21, m21,þ, m0

In other words, . If bits 0 through 22 areM ' 1 % m222&1 % m212&2 % m202&3@@@
all zeros, M takes on the value of one. If bits 0 through 22 are all ones, M is
just a hair under two, i.e., 2 &2&23.

Using this encoding scheme, the largest number that can be represented is:
 Likewise, the smallest number that can be±(2&2&23) × 2128 ' ±6.8 × 1038.

represented is: The IEEE standard reduces this±1.0 × 2&127 ' ±5.9 × 10&39.
range slightly to free bit patterns that are assigned special meanings. In
particular, the largest and smallest numbers allowed in the standard are

The Scientist and Engineer's Guide to Digital Signal Processing72

 and respectively. The freed bit patterns allow three±3.4 × 1038 ±1.2 × 10&38,
special classes of numbers: (1) ±0 is defined as all of the mantissa and
exponent bits being zero. (2) ±4 is defined as all of the mantissa bits being
zero, and all of the exponent bits being one. (3) A group of very small
unnormalized numbers between and . These are lower±1.2 × 10&38 ±1.4 × 10&45

precision numbers obtained by removing the requirement that the leading digit
in the mantissa be a one. Besides these three special classes, there are bit
patterns that are not assigned a meaning, commonly referred to as NANs (Not
A Number).

The IEEE standard for double precision simply adds more bits to both the
mantissa and exponent. Of the 64 bits used to store a double precision number,
bits 0 through 51 are the mantissa, bits 52 through 62 are the exponent, and bit
63 is the sign bit. As before, the mantissa is between one and just under two,
i.e., . The 11 exponent bits form a numberM ' 1 % m512&1 % m502&2 % m492&3@@@
between 0 and 2047, with an offset of 1023, allowing exponents from 2&1023

to . The largest and smallest numbers allowed are and21024 ±1.8 × 10308

, respectively. These are incredibly large and small numbers! It±2.2 × 10&308

is quite uncommon to find an application where single precision is not
adequate. You will probably never find a case where double precision limits
what you want to accomplish.

Number Precision

The errors associated with number representation are very similar to
quantization errors during ADC. You want to store a continuous range of
values; however, you can represent only a finite number of quantized levels.
Every time a new number is generated, after a math calculation for example,
it must be rounded to the nearest value that can be stored in the format you are
using.

As an example, imagine that you allocate 32 bits to store a number. Since
there are exactly different bit patterns possible, you can232 ' 4,294,967,296
represent exactly 4,294,967,296 different numbers. Some programming
languages allow a variable called a long integer, stored as 32 bits, fixed
point, two's complement. This means that the 4,294,967,296 possible bit
patterns represent the integers between -2,147,483,648 and 2,147,483,647. In
comparison, single precision floating point spreads these 4,294,967,296 bit
patterns over the much larger range: to . &3.4 × 1038 3.4 × 1038

With fixed point variables, the gaps between adjacent numbers are always
exactly one. In floating point notation, the gaps between adjacent numbers
vary over the represented number range. If we randomly pick a floating
point number, the gap next to that number is approximately ten million
times smaller than the number itself (to be exact, to times the2&24 2&23

number). This is a key concept of floating point notation: large numbers
have large gaps between them, while small numbers have small gaps.
Figure 4-3 illustrates this by showing consecutive floating point numbers,
and the gaps that separate them.

Chapter 4- DSP Software 73

0.00001233862713
0.00001233862804
0.00001233862895
0.00001233862986

 !
 1.000000000
1.000000119
1.000000238
1.000000358

 !
1.996093750
1.996093869
1.996093988
1.996094108

 !
636.0312500
636.0313110
636.0313720
636.0314331

 !
217063424.0
217063440.0
217063456.0
217063472.0

spacing = 0.00000000000091
(1 part in 13 million)

spacing = 0.000000119
(1 part in 8 million)

spacing = 0.000000119
(1 part in 17 million)

spacing = 0.0000610
(1 part in 10 million)

spacing = 16.0
(1 part in 14 million)

FIGURE 4-3
Examples of the spacing between single
precision floating point numbers. The
spacing between adjacent numbers is
always between about 1 part in 8 million
and 1 part in 17 million of the value of the
number.

TABLE 4-1
Program for demonstrating floating point
error accumulation. This program initially
sets the value of X to 1.000000, and then
runs through a loop that should ideally do
nothing. During each loop, two random
numbers, A and B, are added to X, and then
subtracted back out. The accumulated error
from these additions and subtraction causes
X to wander from its initial value. As Fig. 4-
4 shows, the error may be random or
additive.

100 X = 1 'initialize X
110 '
120 FOR I% = 0 TO 2000
130 A = RND 'load random numbers
140 B = RND 'into A and B
150 '
160 X = X + A 'add A and B to X
170 X = X + B
180 X = X ! A 'undo the additions
190 X = X ! B
200 '
210 PRINT X 'ideally, X should be 1
220 NEXT I%
230 END

The program in Table 4-1 illustrates how round-off error (quantization error
in math calculations) causes problems in DSP. Within the program loop, two
random numbers are added to the floating point variable X, and then subtracted
back out again. Ideally, this should do nothing. In reality, the round-off error
from each of the arithmetic operations causes the value of X to gradually drift
away from its initial value. This drift can take one of two forms depending on
how the errors add together. If the round-off errors are randomly positive and
negative, the value of the variable will randomly increase and decrease. If the
errors are predominately of the same sign, the value of the variable will drift
away much more rapidly and uniformly.

The Scientist and Engineer's Guide to Digital Signal Processing74

FIGURE 4-4
Accumulation of round-off error in floating
point variables. These curves are generated
by the program shown in Table 4-1. When a
floating point variable is repeatedly used in
arithmetic operations, accumulated round-off
error causes the variable's value to drift. If the
errors are both positive and negative, the
value will increase and decrease in a random
fashion. I f the round-off e r rors are
predominately of the same sign, the value
will change in a much more rapid and
uniform manner.

Number of loops
0 500 1000 1500 2000

0.9998

0.9999

1

1.0001

1.0002

Additive error

Random errorV
al

ue
 o

f
X

Figure 4-4 shows how the variable, X, in this example program drifts in
value. An obvious concern is that additive error is much worse than
random error. This is because random errors tend to cancel with each
other, while the additive errors simply accumulate. The additive error is
roughly equal to the round-off error from a single operation, multiplied by
the total number of operations. In comparison, the random error only
increases in proportion to the square root of the number of operations. As
shown by this example, additive error can be hundreds of times worse than
random error for common DSP algorithms.

Unfortunately, it is nearly impossible to control or predict which of these
two behaviors a particular algorithm will experience. For example, the
program in Table 4-1 generates an additive error. This can be changed to
a random error by merely making a slight modification to the numbers being
added and subtracted. In particular, the random error curve in Fig. 4-4 was
generated by defining: and , rather than:A ' EXP(RND) B ' EXP(RND)

 and . Instead of A and B being randomly distributedA ' RND B ' RND
numbers between 0 and 1, they become exponentially distributed values
between 1 and 2.718. Even this small change is sufficient to toggle the
mode of error accumulation.

Since we can't control which way the round-off errors accumulate, keep in mind
the worse case scenario. Expect that every single precision number will have
an error of about one part in forty million, multiplied by the number of
operations it has been through. This is based on the assumption of additive
error, and the average error from a single operation being one-quarter of a
quantization level. Through the same analysis, every double precision number
has an error of about one part in forty quadrillion, multiplied by the number
of operations.

Chapter 4- DSP Software 75

TABLE 4-2
Comparison of floating point and integer variables for loop control. The left hand program controls
the FOR-NEXT loop with a floating point variable, X. This results in an accumulated round-off error
of 0.000133 by the end of the program, causing the last loop value, X = 10.0, to be omitted. In
comparison, the right hand program uses an integer, I%, for the loop index. This provides perfect
precision, and guarantees that the proper number of loop cycles will be completed.

100 'Floating Point Loop Control 100 'Integer Loop Control
110 FOR X = 0 TO 10 STEP 0.01 110 FOR I% = 0 TO 1000
120 PRINT X 120 X = I%/100
130 NEXT X 130 PRINT X

140 NEXT I%

Program Output: Program Output:

0.00 0.00
0.01 0.01
0.02 0.02
0.03 0.03

 ! !
9.960132 9.96
9.970133 9.97
9.980133 9.98
9.990133 9.99

 10.00

Table 4-2 illustrates a particularly annoying problem of round-off error.
Each of the two programs in this table perform the same task: printing 1001
numbers equally spaced between 0 and 10. The left-hand program uses the
floating point variable, X, as the loop index. When instructed to execute a
loop, the computer begins by setting the index variable to the starting value
of the loop (0 in this example). At the end of each loop cycle, the step size
(0.01 in the case) is added to the index. A decision is then made: are more
loops cycles required, or is the loop completed? The loop ends when the
computer finds that the value of the index is greater than the termination
value (in this example, 10.0). As shown by the generated output, round-off
error in the additions cause the value of X to accumulate a significant
discrepancy over the course of the loop. In fact, the accumulated error
prevents the execution of the last loop cycle. Instead of X having a value
of 10.0 on the last cycle, the error makes the last value of X equal to
10.000133. Since X is greater than the termination value, the computer
thinks its work is done, and the loop prematurely ends. This missing last
value is a common bug in many computer programs.

In comparison, the program on the right uses an integer variable, I%, to
control the loop. The addition, subtraction, or multiplication of two integers
always produces another integer. This means that fixed point notation has
absolutely no round-off error with these operations. Integers are ideal for
controlling loops, as well as other variables that undergo multiple
mathematical operations. The last loop cycle is guaranteed to execute!
Unless you have some strong motivation to do otherwise, always use
integers for loop indexes and counters.

The Scientist and Engineer's Guide to Digital Signal Processing76

If you must use a floating point variable as a loop index, try to use fractions
that are a power of two (such as:), instead of a power of ten1/2, 1/4, 3/8, 27/16
(such as: , etc.). For instance, it would be better to use: FOR0.1, 0.6, 1.4, 2.3
X = 1 TO 10 STEP 0.125, rather than: FOR X = 1 to 10 STEP 0.1. This
allows the index to always have an exact binary representation, thereby
reducing round-off error. For example, the decimal number: 1.125, can be
represented exactly in binary notation: 1.001000000000000000000000×20. In
comparison, the decimal number: 1.1, falls between two floating point numbers:
1.0999999046 and 1.1000000238 (in binary these numbers are:
1.00011001100110011001100×20 and 1.00011001100110011001101×20). This
results in an inherent error each time 1.1 is encountered in a program.

A useful fact to remember: single precision floating point has an exact binary
representation for every whole number between ±16.8 million (to be exact,
±224). Above this value, the gaps between the levels are larger than one,
causing some whole number values to be missed. This allows floating point
whole numbers (between ±16.8 million) to be added, subtracted and multiplied,
with no round-off error.

Execution Speed: Program Language

DSP programming can be loosely divided into three levels of sophistication:
Assembly , Compiled , and Application Specific. To understand the
difference between these three, we need to start with the very basics of
digital electronics. All microprocessors are based around a set of internal
binary registers, that is, a group of flip-flops that can store a series of ones
and zeros. For example, the 8088 microprocessor, the core of the original
IBM PC, has four general purpose registers, each consisting of 16 bits.
These are identified by the names: AX, BX, CX, and DX. There are also
nine additional registers with special purposes, called: SI, DI, SP, BP, CS,
DS, SS, ES, and IP. For example, IP, the Instruction Pointer, keeps track
of where in memory the next instruction resides.

Suppose you write a program to add the numbers: 1234 and 4321. When
the program begins, IP contains the address of a section of memory that
contains a pattern of ones and zeros, as shown in Table 4-3. Although it
looks meaningless to most humans, this pattern of ones and zeros contains
all of the commands and data required to complete the task. For example,
when the microprocessor encounters the bit pattern: 00000011 11000011,
it interpreters it as a command to take the 16 bits stored in the BX register,
add them in binary to the 16 bits stored in the AX register, and store the
result in the AX register. This level of programming is called machine
code, and is only a hair above working with the actual electronic circuits.

Since working in binary will eventually drive even the most patient engineer
crazy, these patterns of ones and zeros are assigned names according to the
function they perform. This level of programming is called assembly, and
an example is shown in Table 4-4. Although an assembly program is much
easier to understand, it is fundamentally the same as programming in

Chapter 4- DSP Software 77

10111001 00000000
11010010 10100001
00000100 00000000
10001001 00000000
00001110 10001011
00000000 00011110
00000000 00000010
10111001 00000000
11100001 00000011
00010000 11000011
10001001 10100011
00001110 00000100
00000010 00000000

TABLE 4-3
A machine code program for adding 1234
and 4321. This is the lowest level of
programming: direct manipulation of the
digital electronics. (The right column is a
continuation of the left column).

MOV CX,1234 ;store 1234 in register CX, and then
MOV DS:[0],CX ;transfer it to memory location DS:[0]

MOV CX,4321 ;store 4321 in register CX, and then
MOV DS:[2],CX ;transfer it to memory location DS:[2]

MOV AX,DS:[0] ;move variables stored in memory at
MOV BX,DS:[2] ;DS:[0] and DS:[2] into AX & BX

ADD AX,BX ;add AX and BX, store sum in AX

MOV DS:[4],AX ;move the sum into memory at DS:[4]

TABLE 4-4
An assembly program for adding
1234 and 4321. An assembler is a
program that converts an assembly
program into machine code.

100 A = 1234
110 B = 4321
120 C = A+B
130 END

TABLE 4-5
A BASIC program for adding 1234
and 4321. A compiler is a program
that converts this type of high-level
source code into machine code.

machine code, since there is a one-to-one correspondence between the
program commands and the action taken in the microprocessor. For
example: ADD AX, BX translates to: 00000011 11000011. A program
called an assembler is used to convert the assembly code in Table 4-4
(called the source code) into the patterns of ones and zeros shown in Table
4-3 (called the object code or executable code). This executable code can
be directly run on the microprocessor. Obviously, assembly programming
requires an extensive understanding of the internal construction of the
particular microprocessor you intend to use.

Assembly programming involves the direct manipulation of the digital
electronics: registers, memory locations, status bits, etc. The next level of
sophistication can manipulate abstract variables without any reference to the
particular hardware. These are called compiled or high-level languages. A
dozen or so are in common use, such as: C, BASIC, FORTRAN, PASCAL,
APL, COBOL, LISP, etc. Table 4-5 shows a BASIC program for adding 1234
and 4321. The programmer only knows about the variables A, B, and C, and
nothing about the hardware.

The Scientist and Engineer's Guide to Digital Signal Processing78

A program called a compiler is used to transform the high-level source code
directly into machine code. This requires the compiler to assign hardware
memory locations to each of the abstract variables being referenced. For
example, the first time the compiler encounters the variable A in Table 4-5
(line 100), it understands that the programmer is using this symbol to mean a
single precision floating point variable. Correspondingly, the compiler
designates four bytes of memory that will be used for nothing but to hold the
value of this variable. Each subsequent time that an A appears in the program,
the computer knows to update the value of the four bytes as needed. The
compiler also breaks complicated mathematical expressions, such as: Y =
LOG(XCOS(Z)), into more basic arithmetic. Microprocessors only know how to
add, subtract, multiply and divide. Anything more complicated must be done
as a series of these four elementary operations.

High-level languages isolate the programmer from the hardware. This makes
the programming much easier and allows the source code to be transported
between different types of microprocessors. Most important, the programmer
who uses a compiled language needs to know nothing about the internal
workings of the computer. Another programmer has assumed this
responsibility, the one who wrote the compiler.

Most compilers operate by converting the entire program into machine code
before it is executed. An exception to this is a type of compiler called an
interpreter, of which interpreter BASIC is the most common example. An
interpreter converts a single line of source code into machine code, executes
that machine code, and then goes on to the next line of source code. This
provides an interactive environment for simple programs, although the
execution speed is extremely slow (think a factor of 100).

The highest level of programming sophistication is found in applications
packages for DSP. These come in a variety of forms, and are often provided
to support specific hardware. Suppose you buy a newly developed DSP
microprocessor to embed in your current project. These devices often have lots
of built-in features for DSP: analog inputs, analog outputs, digital I/O, antialias
and reconstruction filters, etc. The question is: how do you program it? In the
worst case, the manufacturer will give you an assembler, and expect you to
learn the internal architecture of the device. In a more typical scenario, a C
compiler will be provided, allowing you to program without being bothered by
how the microprocessor actually operates.

In the best case, the manufacturer will provide a sophisticated software
package to help in the programming: libraries of algorithms, prewritten
routines for I/O, debugging tools, etc. You might simply connect icons to
form the desired system in an easy-to-use graphical display. The things
you manipulate are signal pathways, algorithms for processing signals,
analog I/O parameters, etc. When you are satisfied with the design, it is
transformed into suitable machine code for execution in the hardware. Other
types of applications packages are used with image processing, spectral
analysis, instrumentation and control, digital filter design, etc. This is the
shape of the future.

Chapter 4- DSP Software 79

The distinction between these three levels can be very fuzzy. For example,
most complied languages allow you to directly manipulate the hardware.
Likewise, a high-level language with a well stocked library of DSP functions
is very close to being an applications package. The point of these three
catagories is understand what you are manipulating: (1) hardware, (2) abstract
variables, or (3) entire procedures and algorithms.

There is also another important concept behind these classifications. When
you use a high-level language, you are relying on the programmer who
wrote the compiler to understand the best techniques for hardware
manipulation. Similarly, when you use an applications package, you are
relying on the programmer who wrote the package to understand the best
DSP techniques. Here's the rub: these programmers have never seen the
particular problem you are dealing with. Therefore, they cannot always
provide you with an optimal solution. As you operate on a higher level,
expect that the final machine code will be less efficient in terms of memory
usage, speed, and precision.

Which programming language should you use? That depends on who you are
and what you plan to do. Most computer scientists and programmers use C (or
the more advanced C++). Power, flexibility, modularity; C has it all. C is so
popular, the question becomes: Why would anyone program their DSP
application in something other than C? Three answers come to mind. First,
DSP has grown so rapidly that some organizations and individuals are stuck in
the mode of other languages, such as FORTRAN and PASCAL. This is
especially true of military and government agencies that are notoriously slow
to change. Second, some applications require the utmost efficiency, only
achievable by assembly programming. This falls into the category of "a little
more speed for a lot more work." Third, C is not an especially easy language
to master, especially for part time programmers. This includes a wide range of
engineers and scientists who occasionally need DSP techniques to assist in their
research or design activities. This group often turns to BASIC because of its
simplicity.

Why was BASIC chosen for this book? This book is about algorithms, not
programming style. You should be concentrating on DSP techniques, and not
be distracted by the quirks of a particular language. For instance, all the
programs in this book have line numbers. This makes it easy to describe how
the program operates: "line 100 does such-and-such, line 110 does this-and
that," etc. Of course, you will probably never use line numbers in your actual
programs. The point is, learning DSP has different requirements than using
DSP. There are many books on the market that provide exquisite source code
for DSP algorithms. If you are simply looking for prewritten code to copy into
your program, you are in the wrong place.

Comparing the execution speed of hardware or software is a thankless task; no
matter what the result, the loser will cry that the match was unfair!
Programmers who like high-level languages (such as traditional computer
scientists), will argue that assembly is only 50% faster than compiled code, but
five times more trouble. Those who like assembly (typically, scientists and

The Scientist and Engineer's Guide to Digital Signal Processing80

hardware engineers) will claim the reverse: assembly is five times faster, but
only 50% more difficult to use. As in most controversies, both sides can
provide selective data to support their claims.

As a rule-of-thumb, expect that a subroutine written in assembly will be
between 1.5 and 3.0 times faster than the comparable high-level program. The
only way to know the exact value is to write the code and conduct speed tests.
Since personal computers are increasing in speed about 40% every year,
writing a routine in assembly is equivalent to about a two year jump in
hardware technology.

Most professional programmers are rather offended at the idea of using
assembly, and gag if you suggest BASIC. Their rational is quite simple:
assembly and BASIC discourage the use of good software practices. Good
code should be portable (able to move from one type of computer to another),
modular (broken into a well defined subroutine structure), and easy to
understand (lots of comments and descriptive variable names). The weak
structure of assembly and BASIC makes it difficult to achieve these standards.
This is compounded by the fact that the people who are attracted to assembly
and BASIC often have little formal training in proper software structure and
documentation.

Assembly lovers respond to this attack with a zinger of their own. Suppose you
write a program in C, and your competitor writes the same program in
assembly. The end user's first impression will be that your program is junk
because it is twice as slow. No one would suggest that you write large
programs in assembly, only those portions of the program that need rapid
execution. For example, many functions in DSP software libraries are written
in assembly, and then accessed from larger programs written in C. Even the
staunchest software purist will use assembly code, as long as they don't have
to write it.

Execution Speed: Hardware

Computing power is increasing so rapidly, any book on the subject will be
obsolete before it is published. It's an author's nightmare! The original IBM
PC was introduced in 1981, based around the 8088 microprocessor with a 4.77
MHz clock and an 8 bit data bus. This was followed by a new generation of
personal computers being introduced every 3-4 years: 8088 ! 80286 ! 80386
! 80486 ! 80586 (Pentium). Each of these new systems boosted the
computing speed by a factor of about five over the previous technology. By
1996, the clock speed had increased to 200 MHz, and the data bus to 32 bits.
With other improvements, this resulted in an increase in computing power of
nearly one thousand in only 15 years! You should expect another factor of
one thousand in the next 15 years.

The only way to obtain up-to-date information in this rapidly changing field is
directly from the manufacturers: advertisements, specification sheets, price
lists, etc. Forget books for performance data, look in magazines and your daily

Chapter 4- DSP Software 81

Central
Processing
Unit (CPU)

Math
Coprocessor

Cache
Memory

Main Memory
(program and data)

FIGURE 4-5
Architecture of a typical computer system.
The computational speed is limited by: (1)
the speed of the individual subsystems, and
(2) the rate at which data can be transferred
between these subsystems.

newspaper. Expect that raw computational speed will more than double each
two years. Learning about the current state of computer power is simply not
enough; you need to understand and track how it is evolving.

Keeping this in mind, we can jump into an overview of how execution speed
is limited by computer hardware. Since computers are composed of many
subsystems, the time required to execute a particular task will depend on two
primary factors: (1) the speed of the individual subsystems, and (2) the time it
takes to transfer data between these blocks. Figure 4-5 shows a simplified
diagram of the most important speed limiting components in a typical personal
computer. The Central Processing Unit (CPU) is the heart of the system.
As previously described, it consists of a dozen or so registers, each capable of
holding 32 bits (in present generation personal computers). Also included in
the CPU is the digital electronics needed for rudimentary operations, such as
moving bits around and fixed point arithmetic.

More involved mathematics is handled by transferring the data to a special
hardware circuit called a math coprocessor (also called an arithmetic logic
unit, or ALU). The math coprocessor may be contained in the same chip
as the CPU, or it may be a separate electronic device. For example, the
addition of two floating point numbers would require the CPU to transfer 8
bytes (4 for each number) to the math coprocessor, and several bytes that
describe what to do with the data. After a short computational time, the math
coprocessor would pass four bytes back to the CPU, containing the
floating point number that is the sum. The most inexpensive computer
systems don't have a math coprocessor, or provide it only as an option. For
example, the 80486DX microprocessor has an internal math coprocessor,
while the 80486SX does not. These lower performance systems replace
hardware with software. Each of the mathematical functions is broken into

The Scientist and Engineer's Guide to Digital Signal Processing82

elementary binary operations that can be handled directly within the CPU.
While this provides the same result, the execution time is much slower, say, a
factor of 10 to 20.

Most personal computer software can be used with or without a math
coprocessor. This is accomplished by having the compiler generate machine
code to handle both cases, all stored in the final executable program. If a math
coprocessor is present on the particular computer being used, one section of the
code will be run. If a math coprocessor is not present, the other section of the
code will be used. The compiler can also be directed to generate code for only
one of these situations. For example, you will occasionally find a program that
requires that a math coprocessor be present, and will crash if run on a computer
that does not have one. Applications such as word processing usually do not
benefit from a math coprocessor. This is because they involve moving data
around in memory, not the calculation of mathematical expressions. Likewise,
calculations involving fixed point variables (integers) are unaffected by the
presence of a math coprocessor, since they are handled within the CPU. On the
other hand, the execution speed of DSP and other computational programs using
floating point calculations can be an order of magnitude different with and
without a math coprocessor.

The CPU and main memory are contained in separate chips in most
computer systems. For obvious reasons, you would like the main memory
to be very large and very fast. Unfortunately, this makes the memory very
expensive. The transfer of data between the main memory and the CPU is
a very common bottleneck for speed. The CPU asks the main memory for
the binary information at a particular memory address, and then must wait
to receive the information. A common technique to get around this problem
is to use a memory cache. This is a small amount of very fast memory
used as a buffer between the CPU and the main memory. A few hundred
kilobytes is typical. When the CPU requests the main memory to provide
the binary data at a particular address, high speed digital electronics copies
a section of the main memory around this address into the memory cache.
The next time that the CPU requests memory information, it is very likely
that it will already be contained in the memory cache, making the retrieval
very rapid. This is based on the fact that programs tend to access memory
locations that are nearby neighbors of previously accessed data. In typical
personal computer applications, the addition of a memory cache can
improve the overall speed by several times. The memory cache may be in
the same chip as the CPU, or it may be an external electronic device.

The rate at which data can be transferred between subsystems depends on the
number of parallel data lines provided, and the maximum rate that digital
signals that can be passed along each line. Digital data can generally be
transferred at a much higher rate within a single chip as compared to
transferring data between chips. Likewise, data paths that must pass through
electrical connectors to other printed circuit boards (i.e., a bus structure) will
be slower still. This is a strong motivation for stuffing as much electronics as
possible inside the CPU.

Chapter 4- DSP Software 83

TABLE 4-6
Measured execution times for various computers. Times are in microseconds. The 80286, 80486,
and Pentium are three generations of personal computers, while the TMS320C40 is a micro-
processor specifically designed for DSP tasks. All of the personal computers include a math
coprocessor. Use these times only as a general estimate; times on your computer will vary according
to the particular hardware and software used.

80286
 (12 MHz)

80486
(33 MHz)

PENTIUM
(100 MHz)

TMS320C40
(40 MHz)

INTEGER
A% = B%+C% 1.6 0.12 0.04
A% = B%!C% 1.6 0.12 0.04
A% = B%×C% 2.7 0.59 0.13
A% = B%÷C% 64 9.2 1.5

FLOATING POINT
A = B+C 33 2.5 0.50 0.10
A = B!C 35 2.5 0.50 0.10
A = B×C 35 2.5 0.50 0.10
A = B÷C 49 4.5 0.87 0.80
A = SQR(B) 45 5.3 1.3 0.90
A = LOG(B) 186 19 3.4 1.7
A = EXP(B) 246 25 5.5 1.7
A = B^C 311 31 5.3 2.4
A = SIN(B) 262 30 6.6 1.1
A = ARCTAN(B) 168 21 4.4 2.2

A particularly nasty problem for computer speed is backward compatibility.
When a computer company introduces a new product, say a data acquisition
card or a software program, they want to sell it into the largest possible market.
This means that it must be compatible with most of the computers currently in
use, which could span several generations of technology. This frequently limits
the performance of the hardware or software to that of a much older system.
For example, suppose you buy an I/O card that plugs into the bus of your 200
MHz Pentium personal computer, providing you with eight digital lines that can
transmit and receive data one byte at a time. You then write an assembly
program to rapidly transfer data between your computer and some external
device, such as a scientific experiment or another computer. Much to your
surprise, the maximum data transfer rate is only about 100,000 bytes per
second, more than one thousand times slower than the microprocessor clock
rate! The villain is the ISA bus, a technology that is backward compatible to
the computers of the early 1980s.

Table 4-6 provides execution times for several generations of computers.
Obviously, you should treat these as very rough approximations. If you want
to understand your system, take measurements on your system. It's quite easy;
write a loop that executes a million of some operation, and use your watch to
time how long it takes. The first three systems, the 80286, 80486, and
Pentium, are the standard desk-top personal computers of 1986, 1993 and 1996,
respectively. The fourth is a 1994 microprocessor designed especially for DSP
tasks, the Texas Instruments TMS320C40.

The Scientist and Engineer's Guide to Digital Signal Processing84

The Pentium is faster than the 80286 system for four reasons, (1) the greater
clock speed, (2) more lines in the data bus, (3) the addition of a memory cache,
and (4) a more efficient internal design, requiring fewer clock cycles per
instruction.

If the Pentium was a Cadillac, the TMS320C40 would be a Ferrari: less
comfort, but blinding speed. This chip is representative of several micro-
processors specifically designed to decrease the execution time of DSP
algorithms. Others in this category are the Intel i860, AT&T DSP3210,
Motorola DSP96002, and the Analog Devices ADSP-2171. These often go by
the names: DSP microprocessor, Digital Signal Processor, and RISC
(Reduced Instruction Set Computer). This last name reflects that the increased
speed results from fewer assembly level instructions being made available to
the programmer. In comparison, more traditional microprocessors, such as
the Pentium, are called CISC (Complex Instruction Set Computer).

DSP microprocessors are used in two ways: as slave modules under the control
of a more conventional computer, or as an imbedded processor in a dedicated
application, such as a cellular telephone. Some models only handle fixed point
numbers, while others can work with floating point. The internal architecture
used to obtain the increased speed includes: (1) lots of very fast cache memory
contained within the chip, (2) separate buses for the program and data,
allowing the two to be accessed simultaneously (called a Harvard
Architecture), (3) fast hardware for math calculations contained directly in
the microprocessor, and (4) a pipeline design.

A pipeline architecture breaks the hardware required for a certain task into
several successive stages. For example, the addition of two numbers may
be done in three pipeline stages. The first stage of the pipeline does nothing
but fetch the numbers to be added from memory. The only task of the
second stage is to add the two numbers together. The third stage does
nothing but store the result in memory. If each stage can complete its task
in a single clock cycle, the entire procedure will take three clock cycles to
execute. The key feature of the pipeline structure is that another task can
be started before the previous task is completed. In this example, we could
begin the addition of another two numbers as soon as the first stage is idle,
at the end of the first clock cycle. For a large number of operations, the
speed of the system will be quoted as one addition per clock cycle, even
though the addition of any two numbers requires three clock cycles to
complete. Pipelines are great for speed, but they can be difficult to
program. The algorithm must allow a new calculation to begin, even though
the results of previous calculations are unavailable (because they are still
in the pipeline).

Chapters 28 and 29 discuss DSP microprocessors in much more detail. These
are amazing devices; their high-power and low-cost will bring DSP to a wide
range of consumer and scientific applications. This is one of the technologies
that will shape the twenty-first century.

Chapter 4- DSP Software 85

EQUATION 4-3
Maclaurin power series expansion for
three transcendental functions. This is
how computers calculate functions of
this type, and why they execute so
slowly.

sin(x) ' x &
x 3

3!
%

x 5

5!
&

x 7

7!
%

x 9

9!
&

x 11

11!
% @@@

cos(x) ' 1 &
x 2

2!
%

x 4

4!
&

x 6

6!
%

x 8

8!
&

x 10

10!
% @@@

e x
' 1 % x %

x 2

2!
%

x 3

3!
%

x 4

4!
%

x 5

5!
% @@@

sin (1) ' 1 & 0.166666 % 0.008333 & 0.000198 % 0.000002 & @@@

Execution Speed: Programming Tips

While computer hardware and programming languages are important for
maximizing execution speed, they are not something you change on a day-to
day basis. In comparison, how you program can be changed at any time, and
will drastically affect how long the program will require to execute. Here are
three suggestions.

First, use integers instead of floating point variables whenever
possible. Conventional microprocessors, such as used in personal computers,
process integers 10 to 20 times faster than floating point numbers. On systems
without a math coprocessor, the difference can be 200 to 1. An exception to
this is integer division, which is often accomplished by converting the values
into floating point. This makes the operation ghastly slow compared to other
integer calculations. See Table 4-6 for details.

Second, avoid using functions such as: , etc. Thesesin(x), log(x), y x

transcendental functions are calculated as a series of additions, subtractions
and multiplications. For example, the Maclaurin power series provides:

While these relations are infinite in length, the terms rapidly become small
enough to be ignored. For example:

These functions require about ten times longer to calculate than a single
addition or multiplication (see Table 4-6). Several tricks can be used to bypass
these calculations, such as: ; , when x is very small;x 3 ' x @ x @ x sin(x) .x

, where you already know one of the values and need to findsin(& x) ' -sin(x)
the other, etc. Most languages only provide a few transcendental functions, and
expect you to derive the others by means of the relations in Table 4-7. Not
surprisingly, these derived calculations are even slower.

The Scientist and Engineer's Guide to Digital Signal Processing86

TABLE 4-7
Calculating rarely used functions from more common ones. All angles are in radians,
ATN(X) is the arctangent, LOG(X) is the natural logarithm, SGN(X) is the sign of X (i.e.,
-1 for X#0, 1 for X>0), EXP(X) is eX.

 FUNCTION EQUATION FOR CALCULATING

Secant (X) = 1/COS(X)
Cosecant (X) = 1/SIN(X)
Cotangent (X) = 1/TAN(X)

Arc Sine (X) = ATN(X/SQR(1-X*X))
Arc Cosine (X) = -ATN(X/SQR(1-X*X)) + PI/2
Arc Secant (X) = ATN(SQR(X*X-1)) + (SGN(X)-1) * PI/2
Arc Cosecant (X) = ATN(1/SQR(X*X-1)) + (SGN(X)-1) * PI/2
Arc Cotangent (X) = -ATN(X) + PI/2

Hyperbolic Sine (X) = (EXP(X)-EXP(-X))/2
Hyperbolic Cosine (X) = (EXP(X)+EXP(-X))/2
Hyperbolic Tangent (X) = (EXP(X)-EXP(-X))/(EXP(X)+EXP(-X))
Hyperbolic Secant (X) = 1/HYPERBOLIC COSINE
Hyperbolic Cosecant (X) = 1/HYPERBOLIC SINE
Hyperbolic Cotangent (X) = 1/HYPERBOLIC TANGENT

Arc Hyperbolic Sine (X) = LOG(X+SQR(X*X+1))
Arc Hyperbolic Cosine (X) = LOG(X+SQR(X*X-1))
Arc Hyperbolic Tangent (X) = LOG((1+X) /(1-X))/2
Arc Hyperbolic Secant (X) = LOG((SQR(1-X*X)+1)/X)
Arc Hyperbolic Cosecant (X) = LOG(1+SGN(X)*SQR(1+X*X))/X
Arc Hyperbolic Cotangent (X) = LOG((X+1)/(X-1))/2

LOG10(X) = LOG(X)/LOG(10) = 0.4342945 LOG(X)
PI = 4*ATN(1) = 3.141592653589794

Another option is to precalculate these slow functions, and store the values in
a look-up table (LUT). For example, imagine an 8 bit data acquisition
system used to continually monitor the voltage across a resistor. If the
parameter of interest is the power being dissipated in the resistor, the measured
voltage can be used to calculate: . As a faster alternative, the powerP'V 2/R
corresponding to each of the possible 256 voltage measurements can be
calculated beforehand, and stored in a LUT. When the system is running, the
measured voltage, a digital number between 0 and 255, becomes an index in
the LUT to find the corresponding power. Look-up tables can be hundreds of
times faster than direct calculation.

Third, learn what is fast and what is slow on your particular system.
This comes with experience and testing, and there will always be surprises. Pay
particular attention to graphics commands and I/O. There are usually several
ways to handle these requirements, and the speeds can be tremendously
different. For example, the BASIC command: BLOAD, transfers a data file
directly into a section of memory. Reading the same file into memory byte-by-
byte (in a loop) can be 100 times as slow. As another example, the BASIC
command: LINE, can be used to draw a colored box on the video screen.
Drawing the same box pixel-by-pixel can also take 100 times as long. Even
putting a print statement within a loop (to keep track of what it is doing) can
slow the operation by thousands!

