
535

CHAPTER

29

SHARC, EZ-KIT, EZ-LAB, VisualDSP, EZ-ICE, the SHARC logo, the Analog Devices
logo, and the VisualDSP logo are registered trademarks of Analog Devices, Inc.

Getting Started with DSPs

Once you decide that a Digital Signal Processor is right for your application, you need a way to
get started. Many manufacturers will sell you a low cost evaluation kit, allowing you to
experience their products first-hand. These are a great educational tool; it doesn't matter if you
are a novice or a pro, they are the best way to become familiar with a particular DSP. For
instance, Analog Devices provides the EZ-KIT® Lite to teach potential customers about its
SHARC® family of Digital Signal Processors. For only $179, you receive all the hardware and
software you need to see the DSP in action. This includes "canned" programs provided with the
kit, as well as applications you can write yourself in assembly or C. Suppose you buy one of
these kits from Analog Devices and play with it for a few days. This chapter is an overview of
what you can expect to find and learn.

The ADSP-2106x family

In the last chapter we looked at the general operation of the ADSP-2106x
"SHARC" family of Digital Signal Processors. Table 29-1 shows the various
members of this family. All these devices use the same architecture, but have
different amounts of on-chip memory, a key factor in deciding which one to
use. Memory access is a common bottleneck in DSP systems. The SHARC
DSPs address this by providing an ample supply of on-chip dual-ported SRAM.
However, the last thing you want to do is pay for more memory than you need.
DSPs often go into cost sensitive products, such as cellular telephones and CD
players. In other words, the organization of this family is determined by
marketing as well as technology.

The oldest member of this family is the ADSP-21020. This chip contains the
core architecture, but does not include on-chip memory or I/O handling. This
means it cannot function as a stand-alone computer; it requires external
components to be a functional system. The other devices are complete

The Scientist and Engineer's Guide to Digital Signal Processing536

PRODUCT Memory Notes

AD1460
4 Mbit ×4

Quad-SHARC, Four ADSP-21060's in the
same module; provides an incredible 480
MFLOPS in only 2.05"×2.05"×0.16".

ADSP-21160M 4 Mbit
New! Features Single Instruction Multiple
Data (SIMD) core architecture; optimized
for multiprocessing with link ports, 64 bit
external bus, and 14 channels of DMA

ADSP-21060 4 Mbit
Power house of the family; most memory;
link ports for high speed data transfer and
multi-processing

ADSP-21062 2 Mbit
Same features as the ADSP-21060, but with
less internal memory (SRAM), for lower
cost

ADSP-21061 1 Mbit
Low cost version used in the EZ-KIT Lite;
less memory & no link ports; additional
features in DMA for the serial port

ADSP-21065L 544 kbit
A recent addition to the family; fast and very
low cost ($10). Will attract many fixed point
applications to the SHARC family

ADSP-21020 -0-
Oldest member of the family. Contains the
core processor, but no on-chip memory or
I/O interface. Not quite a SHARC DSP.

TABLE 29-1
Members of the SHARC family.

computers within a single chip. All they require to operate is a source of
power, and some way to load a program into memory, such as an external
PROM or data link.

Notice in Table 29-1 that even the low-end products have a very significant
amount of memory. For instance, the ADSP-21065L has 544 kbits of internal
SRAM. This is enough to hold 6-8 seconds of digitized speech (8k samples per
second, 8 bits per sample). On the high-end of the family, the ADSP-21060
has a 4 Mbit memory. This is more than enough to store an entire digitized
image (512×512 pixels, 8 bits per pixel). If you require even more memory,
you easily add external SRAM (or slower memory) to any of these devices.

In addition to memory, there are also differences between these family
members in their I/O sections. The ADSP-21060 and ADSP-21062 (the high-
end) each have six link ports. These are 4 bit wide parallel connections for
combining DSPs in multiprocessing systems, and other applications that
require flexible high-speed I/O. The ADSP-21061 and ADSP-21065L (the
low-end) do not have link ports, but feature more DMA channels to assist
in their serial port operation. You will also see these part numbers with an
"L" or "M" after them, such as "ADSP-21060L." This indicates that the
device operates from a voltage lower than the traditional 5.0 volts. For

Chapter 29- Getting Started with DSPs 537

SHARC

UART/
RS-232
Driver

PROM

CODEC

emulator
connector

processor bus

serial
port

ports
linkADSP-21061

flag LEDs

flag
IRQ

reset

POWER

9-12 vdc, 1 amp

audio in

audio out

(to PC)

Expansion

serial cable

serial
JTAGport

FIGURE 29-1
Block diagram of the EZ-KIT Lite board. Only four external connections are needed: audio in,
audio out, a serial (RS-232) cable to your personal computer, and power. The serial cable and
power supply are provided with the EZ-KIT Lite.

instance, the ADSP-21060L operates from 3.3 volts, while the ADSP-21160M
uses only 2.5 volts.

In June 1998, Analog Devices unveiled the second generation of its SHARC
architecture, with the announcement of the ADSP-21160. This features a
Single Instruction Multiple Data (SIMD, or "sim-dee") core architecture
operating at 100 MHz, an accelerated memory bus bandwidth of 1600
megabytes per second, two 64 bit data busses, and four 80-bit accumulators
for fixed point calculations. All totaled, the new ADSP-21160M executes a
1024 point FFT in only 46 microseconds. The SIMD DSP contains a second
set of computational units (arithmetic and logic unit, barrel shifter, data register
file, and multiplier), allowing ADI to maintain backward code compatibility
with the ADSP-2106x family, while providing a road-map to up to ten times
higher performance.

The SHARC EZ-KIT Lite

The EZ-kit Lite gives you everything you need to learn about the SHARC
DSP, including: hardware, software, and reference manuals. Figure 29-1
shows a block diagram of the hardware provided in the EZ-KIT Lite, based
around the ADSP-21061 Digital Signal Processor. This comes as a 4½ × 6½
inch printed circuit board, mounted on plastic standoffs to allow it to sit on

The Scientist and Engineer's Guide to Digital Signal Processing538

your desk. (There is also a version called the EZ-LAB, using the ADSP-
21062, that plugs into a slot in your computer). There are only four
connections you need to worry about: DC power, a serial connection to your
personal computer, and the input and output signals. A DC power supply and
serial cable are even provided in the kit. The input and output signals are at
audio level, about 1 volt amplitude. Alternatively, a jumper on the board
allows a microphone to be directly attached into the input. The idea is to plug
a microphone into the input, and attach a set of amplified speakers (such as
used with personal computers) to the output. This allows you to hear the effect
of various DSP algorithms.

Analog-to-digital and digital-to-analog conversion is accomplished with an
Analog Devices AD1847 codec (coder-decoder). This is a 16 bit sigma-delta
converter, capable of digitizing two channels (stereo) at a rate of up to 48k
samples/second, and simultaneously outputing two channels at the same rate.
Since the primary use of this board is to process audio signals, the inputs and
outputs are AC coupled with a cutoff of about 20 Hz.

Three push buttons on the board allow the user to generate an interrupt, reset
the processor, and toggle a flag bit that can be read by the system. Four LEDs
mounted on the board can be turned on and off by toggling bits. If you are
ambitious, there are sections of the board that allow you to access the serial
port, link ports (only on the EZ-LAB with its ADSP-21062), and processor bus.
However, these are unpopulated, and you will need to attach the connectors
and other components yourself.

Here's how it works. When the power is applied, the processor boots from an
on-board EPROM (512 kbytes), loading a program that establishes serial
communication with your personal computer. Next, you launch the EZ-Lite
Host program on you PC, allowing you to download programs and upload data
from the DSP. Several prewritten programs come with the EZ-KIT Lite; these
can be run by simply clicking on icons. For instance, a band-pass program
allows you to speak into the microphone, and hear the result after passing
through a band-pass filter. These programs are useful for two reasons: (1) they
allow you to quickly get the system doing something interesting, giving you
confidence that it does work, and (2) they provide a template for creating
programs of your own. Which brings us to our next topic, a design example
using the EZ-KIT Lite.

Design Example: An FIR Audio Filter

After you experiment with the prewritten programs for awhile, you will want
to modify them to gain experience with the programming. Programs can be
written in either assembly or C; the EZ-KIT Lite provides software tools to
support both languages. Later in this chapter we will look at advanced methods
of programming, such as simulation, debugging, and working in an integrated
development environment. For now, we will focus on the easiest way to get
a program to run. Little steps for little feet.

Chapter 29- Getting Started with DSPs 539

Frequency
0 0.1 0.2 0.3 0.4 0.5

0

1

2

3

a. Frequency response

Sample number
0 100 200 300

-0.5

0.0

0.5

1.0

1.5

b. Impulse response (filter kernel)

FIGURE 29-2
Example FIR filter. In (a) the frequency response of a highly custom filter is shown. The
corresponding impulse response (filter kernel) is shown in (b). This filter was designed in Chapter
17 to show that virtually any frequency response can be achieved with FIR digital filters.

A
m

pl
itu

de

A
m

pl
itu

de

Since the source code is in ASCII, a standard text editor is all that is needed
to make changes to existing files, or create entirely new programs. Table 29-2
shows an example of an FIR filter program written in assembly. While this is
the only code you need to worry about for now, keep in mind that there are
other files needed to make this a complete program. This includes an
"architecture description file" (which defines the hardware configuration and
memory allocation), setup of the interrupt vector table, and a codec
initialization routine. Eventually you will need to understand what goes on
in these sections, but for now you simply copy them from the prewritten
programs.

As shown at the top of Table 29-2, there are three variables that need to be
defined before jumping into the main section of code. These are the number of
points in the filter kernel, NR_COEF; a circular buffer that holds the past
samples from the input signal, dline[]; and a circular buffer that holds the
filter kernel, coef[]. We also need to give the program two other pieces of
information: the sampling rate of the codec, and the name of the file containing
the filter kernel, so that it can be read into coef[]. All these steps are easy;
nothing more than a single line of code each. We don't show them in this
example because they are contained in the sections of code that we are ignoring
for simplicity.

Figure 29-2 shows the filter kernel we will test the program with, the same
custom filter we designed in Chapter 17. As you recall, this filter was chosen
to have a very irregular frequency response, reinforcing the notion that FIR
digital filters can provide virtually any frequency response you desire. Figure
(a) shows the frequency response of our test filter, while (b) shows the
corresponding impulse response (i.e., the filter kernel). This 301 point filter
kernel is stored in an ASCII file, and is combined with the other sections of
code during linking to form a single executable program.

The Scientist and Engineer's Guide to Digital Signal Processing540

The main section of the program performs two functions. In lines 6 to 13, the
data-address-generators (DAGs) are configured to manage the circular buffers:
dline[], and coef[]. As described in the last chapter, three parameters are
needed for each buffer: the starting location of the buffer in memory (b0 and
b8), the length of the buffer (l0 and l8), and the step size of the data being
stored in the buffer (m0 and m8). These parameters that control the circular
buffers are stored in hardware registers in the DAGs, allowing them to access
and manage the data very efficiently.

The second action of the main program is a "thumb-twiddling" loop,
implemented in lines 15 to 19. This does nothing but wait for an interrupt
indicating that an input sample has been acquired. All of the processing in this
program occurs on a sample-by-sample basis. Each time a sample is read
from the input, a sample in the output signal is calculated and routed to the
codec. Most time-domain algorithms, such as FIR and IIR filters, fall into this
category. The alternative is frame-by-frame processing, which is required
for frequency-domain techniques. In the frame-by-frame method, a group of
samples is read from the input, calculations are conducted, and a group of
samples is written to the output.

The subroutine that services the sample-ready interrupt is broken into three
sections. The first section (lines 27 to 33) fetches the sample from the codec
as a fixed point number, and converts it to floating point. In SHARC
assembly language, a data register holding a fixed point number is referred to
by "r" (such as r0, r8, r15, etc.), and by "f" if it is holding a floating point
number (i.e., f0, f8, or f15.). For instance, in line 32, the fixed point number
in data register 0 (i.e., r0) is converted into a floating point number and
overwrites data register 0 (i.e., f0). This conversion is done according to a
scaling specified by the fixed point number in data register 1 (i.e. r1). In the
third section (lines 47 to 53), the opposite steps take place; the floating point
number for the output sample is converted to fixed point and sent to the codec.

The FIR filter that converts the input samples into the output samples is
contained in lines 35 to 45. All the calculations are carried out in floating
point, avoiding the need to worry about scaling and overflow. As described in
the last chapter, this section of code is optimized to take advantage of the
SHARC DSP's ability to execute multiple instructions each clock cycle.

After we have the assembly program written and the filter kernel designed,
we are ready to create a program that can be executed on the SHARC DSP.
This is done by running the compiler, the assembler, and then the linker;
three programs provided with the EZ-KIT Lite. The compiler converts a C
program into the SHARC's assembly language. If you directly write the
program in assembly, such as in this example, you bypass this step. The
assembler and linker convert the program and external files (such as the
architecture file, codec initialization routines, filter kernel, etc.) into the final
executable file. All this takes about 30 seconds, with the final result being
a SHARC program residing on the harddisk of your PC. The EZ-KIT Lite
host is then used to run the program on the EZ-KIT Lite. Simply click

Chapter 29- Getting Started with DSPs 541

TABLE 29-2
FIR filter program in assembly.

 Before entering the main program, the following constant and variables must be defined:
 NR_COEF The number of coefficients in the filter kernel (301 in this example)
 dline[NR_COEF] A circular buffer holding the past input samples, in data memory
 coef[NR_COEF] A circular buffer holding the filter coefficients, in program memory

001 /**
002 ****************** MAIN PROGRAM **********************
003 **/
004 main:
005
006 /* INITIALIZE THE DAGS TO CONTROL THE CIRCULAR BUFFERS */
007
008 b0 = dline; /* set up dline[], the buffer holding the past input samples */
009 l0 = @dline;
010 m0 = 1;
011 b8 = coef; /* set up coef[], the buffer holding the filter coefficients */
012 l8 = @coef;
013 m8 = 1;
014
015 /* ENTER A LOOP, WAITING FOR THE SAMPLE-READY INTERRUPT */
016
017 wait:
018 idle;
019 jump wait;
020
021
022 /***
023 ********* SUBROUTINE TO PROCESS ONE SAMPLE ***********
024 ***/
025 sample_ready:
026
027 /* ACQUIRE THE INPUT SAMPLE, CONVERT TO FLOATING POINT */
028
029 r0 = dm(rx_buf + 1); /* move the input sample into r0 */
030 r0 = lshift r0 by 16; /* shift to the highest 16 bits to preserve the sign */
031 r1 = -31; /* set the scaling for the conversion */
032 f0 = float r0 by r1; /* convert from fixed to floating point */
033 dm(i0,m0) = f0; /* store the new sample in dline[], and zero f12 */
034
035 /* CALCULATE THE OUTPUT SAMPLE FROM THE FIR FILTER */
036
037 f12 = 0; /* prime the registers */
038 f2 = dm(i0,m0), f4 = pm(i8,m8);
039 f8 = f2*f4, f2 = dm(i0,m0), f4 = pm(i8,m8);
040 /* efficient main loop */
041 lcntr = NR_COEF-2, do (pc,1) until lce;
042 f8 = f2*f4, f12 = f8+f12, f2 = dm(i0,m0), f4 = pm(i8,m8);
043
044 f8 = f2*f4, f12 = f8+f12; /* complete the last loop */
045 f12 = f8+f12;
046
047 /* CONVERT THE OUTPUT SAMPLE TO FIXED POINT & OUTPUT */
048
049 r1 = 31; /* set the scaling for the conversion */
050 r8 = fix f12 by r1; /* convert from floating to fixed point */
051 rti(db); /* return from interrupt, but execute next 2 lines */
052 r8 = lshift r8 by -16; /* shift to the lowest 16 bits */
053 dm(tx_buf + 1) = r8; /* move the sample to the output */

The Scientist and Engineer's Guide to Digital Signal Processing542

EZ-KIT

Signal Generator Oscilloscope

input output

FIGURE 29-3
Testing the EZ-KIT Lite. Analog engineers test the performance of a system by connecting a signal
generator to its input, and an oscilloscope to its output. When a DSP system (such as the EZ-KIT
Lite) is tested in this way, it appears to be a virtually perfect analog system

on the file you want the DSP to run, and the EZ-KIT Lite host takes care of the
rest, downloading the program and starting it running.

This brings us to two questions. First, how do we test our audio filter to make
sure it is operating as we designed it; and second, what in the world is a
company called Analog Devices doing making Digital Signal Processors?

Analog measurements on a DSP system

For just a few moments, forget that you are studying digital techniques. Let's
take a look at this from the standpoint of an engineer that specializes in analog
electronics. He doesn't care what is inside of the EZ-KIT Lite, only that it has
an analog input and an analog output. As shown in Fig. 29-3, he would invoke
the traditional analog method of analyzing a "black box," attach a signal
generator to the input, and look at the output on an oscilloscope.

What does our analog guru find? First, the system is linear (as least as far as
this simple test can tell). If a sine wave is placed into the input, a sine wave
is observed on the output. If the amplitude or frequency of the input is
changed, a corresponding change is seen in the output. When the input
frequency is slowly increased, there comes a point where the amplitude of the
output sine wave decreases rapidly to zero. That occurs just below one-half the
sampling rate, due to the action of the anti-alias filter on the ADC.

Now our engineer notices something unknown in the analog world: the
system has a perfect linear phase. In other words, there is a constant delay
between an event occurring in the input signal, and the result of that event
in the output signal. For instance, consider our example filter kernel in Fig.
29-2. Since the center of symmetry is at sample 150, the output signal will
be delayed by 150 samples relative to the input signal. If the system is
sampling at 8 kHz, for example, this delay will be 18.75 milliseconds. In
addition, the sigma-delta converter will also provide a small additional
fixed delay.

Chapter 29- Getting Started with DSPs 543

Frequency
0 2000 4000 6000 8000 10000

0

1

2

3

Measured frequency response

FIGURE 29-4
Measured frequency response. This graph
shows measured points on the frequency
response of the example FIR filter. These
measured points have far less accuracy than
the designed frequency response of Fig. 29-
2a.

A
m

pl
itu

de
Our analog engineer will become very agitated when he sees this linear phase.
The signals won't appear the way he thinks they should, and he will start
twisting knobs at lightning speed. He will complain that the triggering isn't
working right, and mumble such things as: "this doesn't make sense," what's
going on here?", and "who's been playing with my oscilloscope?" The
performance of DSP systems is so good, it will take him a few minutes before
he understands what he is seeing.

To make him even more impressed, we ask our engineer to manually measure
the frequency response of the system. To do this, he will step the signal
generator through all the frequencies between 125 Hz and 10 kHz in
increments of 125 Hz. At each frequency he measures the amplitude of the
output signal and divides it by the amplitude of the input signal. (Of course,
the easiest way to do this is to keep the input signal at a constant amplitude).
We set the sampling rate of the EZ-KIT Lite at 22 kHz for this test. In other
words, the 0 to 0.5 digital frequency of Fig. 29-2a is mapped to DC to 11 kHz
in our real world measurement.

Figure 29-4 shows actual measurements taken on the EZ-KIT Lite; it
couldn't be better! The measured data points agree with the theoretical
curve within the limit of measurement error. This is something our analog
engineer has never seen with filters made from resistors, capacitors, and
inductors.

However, even this doesn't give the DSP the credit it deserves. Analog
measurements using oscilloscopes and digital-volt-meters have a typical
accuracy and precision of about 0.1% to 1%. In comparison, this DSP system
is limited only by the -0.001% round-off error of the 16 bit codec, since the
internal calculations use floating point. In other words, the device being
evaluated is one-hundred times more precise than the measurement tool being
used. A proper evaluation of the frequency response would require a
specialized instrument, such as a computerized data acquisition system with a
20 bit ADC. Given these facts, it is not surprising that DSPs are often used in
measurement instruments to achieve high precision.

The Scientist and Engineer's Guide to Digital Signal Processing544

Now we can answer the question: Why does Analog Devices sell Digital
Signal Processors? Only a decade ago, state-of-the-art signal processing was
carried out with precision op amps and similar transistor circuits. Today, the
highest quality analog processing is accomplished with digital techniques.
Analog Devices is a great role-model for individuals and other companies; hold
on to your vision and goals, but don't be afraid to adapt with the changing
technology!

Another Look at Fixed versus Floating Point

In this last example, we took advantage of one of the SHARC DSP's key
features, its ability to handle floating point calculations. Even though the
samples are in a fixed point format when passed to and from the codec, we go
to the trouble of converting them to floating point for the intermediate FIR
filtering algorithm. As discussed in the last chapter, there are two reasons for
wanting to process the data with floating point math: ease of programming, and
performance. Does it really make a difference?

For the programmer, yes, it makes a large difference. Floating point code is
far easier to write. Look back at the assembly program in Table 29-2. There
are only two lines (41 and 42) in the main FIR filter. In contrast, the fixed
point programmer must add code to manage the data at each math calculation.
To avoid overflow and underflow, the values must be checked for size and, if
needed, scaled accordingly. The intermediate results will also need to be stored
in an extended precision accumulator to avoid the devastating effects of
repeated round-off error.

The issue of performance is much more subtle. For example, Fig. 29-5a shows
an FIR low-pass filter with a moderately sharp cutoff, as described in Chapter
16. This "large scale" curve would look the same whether fixed or floating
point were used in the calculation. To see the difference between these two
methods, we must zoom in on the amplitude by a factor of several hundred as
shown in (b), (c), and (d). Here we can see a clear difference. The floating
point execution, (b), has such low round-off noise that its performance is
limited by the way we designed the filter kernel. The 0.02% overshoot near the
transition is a characteristic of the Blackman window used in this filter. The
point is, if we want to improve the performance, we need to work on the
algorithm, not the implementation. The curves in (c) and (d) show the round-
off noise introduced when each point in the filter kernel is represented by 16
and 14 bits, respectively. A better algorithm would do nothing to make these
better curves; the shape of the actual frequency response is swamped by
noise.

Figure 29-6 shows the difference between fixed and floating point in the
time domain. Figure (a) shows a wiggly signal that exponentially decreases
in amplitude. This might represent, for example, the sound wave from a
plucked string, or the shaking of the ground from a distant explosion. As
before, this "large scale" waveform would look the same whether fixed or
floating point were used to represent the samples. To see the difference,

Chapter 29- Getting Started with DSPs 545

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

a. Frequency response

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.998

0.999

1.000

1.001

1.002

b. Floating point

Ripple from
window used

FIGURE 29-5
Round-off noise in the frequency response. Figure (a) shows the frequency response of a windowed-sinc low-pass
filter, using a Blackman window and 150 points in the filter kernel. Figures (b), (c), and (d) show a more detailed
view of this response by zooming in on the amplitude. When the filter kernel is represented in floating point, (b), the
round-off noise is insignificant compared to the imperfections of the windowed-sinc design. As shown in (c) and (d),
representing the filter kernel in fixed point makes round-off noise the dominate imperfection.

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.998

0.999

1.000

1.001

1.002

c. 16 bits

Frequency
0 0.1 0.2 0.3 0.4 0.5

0.998

0.999

1.000

1.001

1.002

d. 14 bits

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

we must zoom in on the amplitude, as shown in (b), (c) and (d). As discussed
in Chapter 3, this quantization appears much as additive random noise, limiting
the detectability of small components in the signals.

These performance differences between fixed and floating point are often not
important; for instance, they cannot even be seen in the "large scale" signals
of Fig. 29-5a and Fig. 29-6a. However, there are some applications where the
extra performance of floating point is helpful, and may even be critical. For
instance, high-fidelity consumer audio system, such as CD players, represent
the signals with 16 bit fixed point. In most cases, this exceeds the capability
of human hearing. However, the best professional audio systems sample the
signals with as high as 20 to 24 bits, leaving absolutely no room for artifacts
that might contaminate the music. Floating point is nearly ideal for algorithms
that process these high-precision digital signals.

Another case where the higher performance of floating point is needed is
when the algorithm is especially sensitive to noise. For instance, FIR

The Scientist and Engineer's Guide to Digital Signal Processing546

Sample number
0 50 100 150 200 250 300

-1.0

-0.5

0.0

0.5

1.0

a. Example signal

Sample number
200 225 250 275 300

-0.0010

-0.0005

0.0000

0.0005

0.0010

b. Floating point

FIGURE 29-6
Round-off noise in the time domain. Figure (a) shows an example signal with an exponentially decaying
amplitude. Figures (b), (c), and (d) show a more detailed view by zooming in on the amplitude. When the
signal is represented in floating point, (b), the round-off noise is so low that it cannot be seen in this graph.
As shown in (c) and (d), representing the signal in fixed point produces far higher levels of round-off noise.

Sample number
200 225 250 275 300

-0.0010

-0.0005

0.0000

0.0005

0.0010

c. Fixed point (16 bit)

Sample number
200 225 250 275 300

-0.0010

-0.0005

0.0000

0.0005

0.0010

d. Fixed point (14 bit)

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

filters are quite insensitive to round-off effects. As shown in Fig. 29-5, round-
off noise doesn't change the overall shape of the frequency response; the entire
curve just becomes noisier. IIR filters are a different story; round-off can
cause all sorts of havoc, including making them unstable. Floating point allows
these algorithms to achieve better performance in cutoff frequency sharpness,
stopband attenuation, and step response overshoot.

Advanced Software Tools

Our custom filter example shows the easiest way to get a program running on
the SHARC DSP: editing, assembling, linking, and downloading, performed by
individual programs. This method is fine for simple tasks, but there are better
software tools available for the advanced programmer. Let's look at what is
available for when you get really serious about DSPs.

The first tool we want to examine is the C compiler. As discussed in
the last chapter, both assembly and C are commonly used to program

Chapter 29- Getting Started with DSPs 547

TABLE 29-3
C library functions. This is a partial list of the
functions available when C is used to program
the Analog Devices SHARC DSPs.

MATH OPERATIONS
abs absolute value
acos arc cosine
asin arc sine
atan arc tangent
atan2 arc tangent of quotient
cabsf complex absolute value
cexpf complex exponential
cos cosine
cosh hyperbolic cosine
cot cotangent
div division
exp exponential
fmod modulus
log natural logarithm
log10 base 10 logarithm
matadd matrix addition
matmul matrix multiplication
pow raise to a power
rand random number generator
sin sine
sinh hyperbolic sine
sqrt square root
srand random number seed
tan tangent
tanh hyperbolic tangent

PROGRAM CONTROL
abort abnormal program end
calloc allocate / initialize memory
free deallocate memory
idle processor idle instruction
interrupt define interrupt handling
poll_flag_in test input flag
set_flag sets the processor flags
timer_off disable processor timer
timer_on enable processor timer
timer_set initialize processor timer

CHARACTER & STRING MANIPULATION
atoi convert string to integer
bsearch binary search of array
isalnum detect alphanumeric character
isalpha detect alphabetic character
iscntrl detect control character
isdigit detect decimal digit
isgraph detect printable character
islower detect lowercase character
isprint detect printable character
ispunct detect punctuation character
isspace detect whitespace character
isupper detect uppercase character
isxdigit detect hexadecimal digit
memchr find first occurrence of char
memcpy copy characters
strcat concatenate strings
strcmp compare strings
strerror get error message
strlen string length
strncmp compare characters
strrchr find last occurrence of char
strstr find string within string
strtok convert string to tokens
system sent string to operating system
tolower change uppercase to lowercase
toupper change lowercase to uppercase

SIGNAL PROCESSING
a_compress A-law compressing
a_expand A-law expansion
autocorr autocorrelation
biquad biquad filter section
cfftN complex FFT
crosscorr cross-correlation
fir FIR filter
histogram histogram
iffN inverse complex FFT
iir IIR filter
mean mean of an array
mu_compress mu law compression
mu_expand mu law expansion
rfftN real FFT
rms rms value of an array

DSPs. A tremendous advantage of using C is the library of functions, both
standard C operations, as well as DSP algorithms. Table 29-3 shows a partial
list of the C library functions for the SHARC DSPs. The math group includes
many functions common in DSP, such as the trig functions (sin, cos, tan, etc.),
logarithm, and exponent. If you need these type of functions in your program,
this is probably enough motivation in itself to use C instead of assembly. Pay
special attention to the "signal processing" routines in Table 29-3. Here you
will find key DSP algorithms, including: real and complex FFTs, FIR and IIR
filters, and statistical functions such as the mean, rms value, and variance. Of
course, all these routines are written in assembly, allowing them to be very
efficient in both speed and memory usage.

The Scientist and Engineer's Guide to Digital Signal Processing548

TABLE 29-4

/* CIRCBUF.C */
/* This is an echo program written in C for the ADSP-21061 EZ-KIT Lite. The */
/* echo program takes the talkthru program and adds a circular buffering scheme. */
/* The circular buffer is defined by the functions CIRCULAR_BUFFER, BASE, */
/* and LENGTH. The echo is performed by adding the current input to the oldest */
/* input. The delay in the echo can be modified by changing BUFF_LENGTH. */
/* */
/* */
#include <21020.h> /* for the idle() command */
#include <signal.h> /* for the interrupt command */
#include <macros.h> /* for the CIRCULAR_BUFFER and segment functions */

#define BUFF_LENGTH 4000
 /* define echo as 21k DAG1 reg i1 */

CIRCULAR_BUFFER (float,1,echo) /* a DM pointer to a circular buffer */

volatile float in_port segment (hip_reg0); /* hip_reg0 and hip-reg2 are */
volatile float out_port segment (hip_reg2); /* used in the architecture file */

void process_input (int);
void main (void)

{ /* Make this a variable length array. If emulator is stopped at main */
/* and _BUFF_LENGTH in dm window is modified, the echo delay */
/* is modified. Do not make BUFF_LENGTH greater than stack size! */

float data_buff [BUFF_LENGTH];
interrupt (SIG_IRQ3, process_input);

BASE (echo) = data_buff; /* Loads b1 and i1 with buff start adr */
LENGTH (echo) = BUFF_LENGTH; /* Loads L1 with the length of the buffer */

/* as the array is filled, the nth location contains the newest value, while */
/* the nth + 1 location contains the oldest value. */

while (1)
 { /* the echo sends the sum of the most */
 float oldest, newest; /* recent value and the oldest value */
 idle();

/* Echo is pointing to the nth location after the interrupt routine. */
/* Place the new value in variable 'newest'. After the access, update */
/* the pointer by one to point at location n+1. */

 CIRC_READ (echo, 1, newest, dm);

/* Now echo is pointing to n+1. Read the location and place value in */
/* variable 'oldest'. Do not update the pointer, since it is now */
/* pointing to the new location for the interrupt handler. */

 CIR_READ (echo, 0, oldest, dm);

/* add the oldest and most recent and send out on port */
 out_port=oldest+newest;
 }
}

void process_input (int int_number)
{

/* The newest input value is written over the oldest value in the nth */
/* location and the pointer is not updated. */

 CIRC_WRITE (echo, 0, in_port, dm);
}

Chapter 29- Getting Started with DSPs 549

Table 29-4 shows an example C program, taken from the Analog Devices' "C
Compiler Guide and Reference Manual." This program generates an echo by
adding a delayed version of the signal to itself. The most recent 4000 samples
from the input signal are stored in a circular buffer. As each sample is
acquired, the circular buffer is updated, the newest sample is added to a scaled
version of the oldest sample, and the resulting sample directed to the output.

The next advanced software tool you should look for is an integrated
development environment. This is a fancy term that means everything
needed to program and test the DSP is combined into one smoothly functioning
package. Analog Devices provides an integrated development environment in
a product called VisualDSP®, running under Windows® 95 and Windows
NTTM. Figure 29-7 shows an example of the main screen, providing a seamless
way to edit, build, and debug programs.

Here are some of the key features of VisualDSP, showing why an integrated
development environment is so important for fast software development. The
editor is specialized for creating programs in C, assembly, and a mixture of
the two. For instance, it understands the syntax of the languages, allowing
it to display different types of statements in different colors. You can also

FIGURE 29-7
Example screen from VisualDSP. This provides an integrated development environment for creating
programs on the SHARC. All of the following functions can be accessed from this single interface:
editing, compiling, assembling, linking, simulating, debugging, downloading, and PROM creation.

1. Move easily between Edit, Build, and Debug activities
2. Mix Assembly and C in a common source file
3. View "build" results
4. Powerful editor understands syntax
5. Easy access through bookmarks

1

2

4

5

3

The Scientist and Engineer's Guide to Digital Signal Processing550

FIGURE 29-8
VisualDSP debugging screen. This is a common interface for both simulation and emulation. It can
view a C program interspersed with the resulting assembly code, track execution of instructions; examine
registers (hardware, software, and memory); trace bus activity; and many other tasks.

1. Profile code to identify bottlenecks
2. View mixed C and Assembly listings
3. Create custom Register window

1

2 3

edit more than one file at one. This is very convenient, since the final
program is created by linking several files together.

Figure 29-8 shows an example screen from the VisualDSP debugger. This is
an interface to two different types of tools: simulators and emulators.
Simulators test the code within the personal computer, without even needing
a DSP to be present. This is generally the first debugging step after the
program is written. The simulator mimics the architecture and operation of the
hardware, including: input data streams, interrupts and other I/O. Emulators
(such as the Analog Devices EZ-ICE®) examine the program operation on the
actual hardware. This requires the emulator software (on your PC) to be able
to monitor the electrical signals inside of the DSP. To support this, the
SHARC DSPs feature an IEEE 1140.1 JTAG Test Access Port, allowing an
external device to track the processor's internal functions.

After you have used an evaluation kit and given some thought to purchasing
advanced software tools, you should also consider attending a training class.
These are given by many DSP manufacturers. For instance, Analog Devices
offers a 3 day class, taught several time a year, at several different locations.
These are a great way of learning about DSPs from the experts. Look at the
manufacturer's websites for details.

