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CHAPTER

25
Special Imaging Techniques

This chapter presents four specific aspects of image processing.  First, ways to characterize the
spatial resolution are discussed.  This describes the minimum size an object must be to be seen
in an image.  Second, the signal-to-noise ratio is examined, explaining how faint an object can
be and still be detected.  Third, morphological techniques are introduced.  These are nonlinear
operations used to manipulate binary images (where each pixel is either black or white).  Fourth,
the remarkable technique of computed tomography is described.  This has revolutionized medical
diagnosis by providing detailed images of the interior of the human body.  

Spatial Resolution

Suppose we want to compare two imaging systems, with the goal of
determining which has the best spatial resolution.  In other words, we want to
know which system can detect the smallest object.   To simplify things, we
would like the answer to be a single number for each system.  This allows a
direct comparison upon which to base design decisions.  Unfortunately, a single
parameter is not always sufficient to characterize all the subtle aspects of
imaging.  This is complicated by the fact that spatial resolution is limited by
two distinct but interrelated effects: sample spacing and sampling aperture
size.  This section contains two main topics: (1) how a single parameter can
best be used to characterize spatial resolution, and (2) the relationship between
sample spacing and sampling aperture size.  

Figure 25-1a shows profiles from three circularly symmetric PSFs: the
pillbox, the Gaussian, and the exponential.  These are representative of the
PSFs commonly found in imaging systems.  As described in the last chapter,
the pillbox can result from an improperly focused lens system.  Likewise,
the Gaussian is formed when random errors are combined, such as viewing
stars through a turbulent atmosphere.  An exponential PSF is generated
when electrons or x-rays strike a phosphor layer and are converted into
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FIGURE 25-1
FWHM versus MTF.  Figure (a) shows profiles of three PSFs commonly found in imaging systems: (P) pillbox,
(G) Gaussian, and (E) exponential.  Each of these has a FWHM of one unit.  The corresponding MTFs are
shown in (b).  Unfortunately, similar values of FWHM do not correspond to similar MTF curves.
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light.  This is used in radiation detectors, night vision light amplifiers, and CRT
displays.   The exact shape of these three PSFs is not important for this
discussion, only that they broadly represent the PSFs seen in real world
applications. 

The PSF contains complete information about the spatial resolution.  To express
the spatial resolution by a single number, we can ignore the shape of the PSF
and simply measure its width.  The most common way to specify this is by the
Full-Width-at-Half-Maximum (FWHM) value.  For example, all the PSFs in
(a) have an FWHM of 1 unit.  

Unfortunately, this method has two significant drawbacks.  First, it does not
match other measures of spatial resolution, including the subjective judgement
of observers viewing the images.  Second, it is usually very difficult to directly
measure the PSF.  Imagine feeding an impulse into an imaging system; that is,
taking an image of a very small white dot on a black background.  By
definition, the acquired image will be the PSF of the system.  The problem is,
the measured PSF will only contain a few pixels, and its contrast will be low.
Unless you are very careful, random noise will swamp the measurement.  For
instance, imagine that the impulse image is a 512×512 array of all zeros except
for a single pixel having a value of 255.  Now compare this to a normal image
where all of the 512×512 pixels have an average value of about 128.  In loose
terms, the signal in the impulse image is about 100,000 times weaker than a
normal image.  No wonder the signal-to-noise ratio will be bad; there's hardly
any signal!  

A basic theme throughout this book is that signals should be understood in the
domain where the information is encoded.   For instance, audio signals should
be dealt with in the frequency domain, while image signals should be handled
in the spatial domain.  In spite of this, one way to measure image resolution is
by looking at the frequency response.  This goes against the fundamental
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a.  Example profile at 12 lp/mm

b.  Example profile at 3 lp/mm
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FIGURE 25-2
Line pair gauge.  The line pair gauge is
a tool used to measure the resolution of
imaging systems. A series of black and
white ribs move together, creating a
continuum of spatial frequencies.  The
resolution of a system is taken as the
frequency where the eye can no longer
distinguish the individual ribs. This
example line pair gauge is shown
several times larger than the calibrated
scale indicates. 
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philosophy of this book; however, it is a common method and you need to
become familiar with it.  

Taking the two-dimensional Fourier transform of the PSF provides the two-
dimensional frequency response.  If the PSF is circularly symmetric, its
frequency response will also be circularly symmetric.  In this case, complete
information about the frequency response is contained in its profile.  That is,
after calculating the frequency domain via the FFT method, columns 0 to N/2
in row 0 are all that is needed.  In imaging jargon, this display of the frequency
response is called the Modulation Transfer Function (MTF).  Figure 25-1b
shows the MTFs for the three PSFs in (a).  In cases where the PSF is not
circularly symmetric, the entire two-dimensional frequency response contains
information.  However, it is usually sufficient to know the  MTF curves in the
vertical and horizontal directions (i.e., columns 0 to N/2 in row 0, and rows 0
to N/2 in column 0).  Take note: this procedure of extracting a row or column
from the two-dimensional frequency spectrum is not equivalent to taking the
one-dimensional FFT of the profiles shown in (a).  We will come back to this
issue shortly.  As shown in Fig. 25-1, similar values of FWHM do not
correspond to similar MTF curves.

Figure 25-2 shows a line pair gauge, a device used to measure image
resolution via the MTF.   Line pair gauges come in different forms depending
on the particular application.  For example, the black and white pattern shown
in this figure could be directly used to test video cameras.  For an x-ray
imaging system, the ribs might be made from lead, with an x-ray transparent
material between.  The key feature is that the black and white lines have a
closer spacing toward one end.  When an image is taken of a line pair gauge,
the lines at the closely spaced end will be blurred together, while at the other
end they will be distinct.  Somewhere in the middle the lines will be just barely
separable.  An observer looks at the image, identifies this location, and reads
the corresponding resolution on the calibrated scale.
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The way that the ribs blur together is important in understanding the
limitations of this measurement.  Imagine acquiring an image of the line
pair gauge in Fig. 25-2.  Figures (a) and (b) show examples of the profiles
at low and high spatial frequencies.  At the low frequency, shown in (b),
the curve is flat on the top and bottom, but the edges are blurred,    At the
higher spatial frequency, (a), the amplitude of the modulation has been
reduced.  This is exactly what the MTF curve in Fig. 25-1b describes:
higher spatial frequencies are reduced in amplitude.  The individual ribs
will be distinguishable in the image as long as the amplitude is greater than
about 3% to 10% of the original height.  This is related to the eye's ability
to distinguish the low contrast difference between the peaks and valleys in
the presence of image noise.

A strong advantage of the line pair gauge measurement is that it is simple and
fast.  The strongest disadvantage is that it relies on the human eye, and
therefore has a certain subjective component.  Even if the entire MTF curve is
measured, the most common way to express the system resolution is to quote
the frequency where the MTF is reduced to either 3%, 5% or 10%.
Unfortunately, you will not always be told which of these values is being used;
product data sheets frequently use vague terms such as "limiting resolution."
Since manufacturers like their specifications to be as good as possible
(regardless of what the device actually does), be safe and interpret these
ambiguous terms to mean 3% on the MTF curve. 

A subtle point to notice is that the MTF is defined in terms of sine waves,
while the line pair gauge uses square waves.  That is, the ribs are uniformly
dark regions separated by uniformly light regions.  This is done for
manufacturing convenience; it is very difficult to make lines that have a
sinusoidally varying darkness.  What are the consequences of using a square
wave to measure the MTF? At high spatial frequencies, all frequency
components but the fundamental of the square wave have been removed.  This
causes the modulation to appear sinusoidal, such as is shown in Fig. 25-2a.  At
low frequencies, such as shown in Fig. 25-2b, the wave appears square.  The
fundamental sine wave contained in a square wave has an amplitude of 4/B '

1.27 times the amplitude of the square wave (see Table 13-10).  The result: the
line pair gauge provides a slight overestimate of the true resolution of the
system, by starting with an effective amplitude of more than pure black to pure
white.  Interesting, but almost always ignored.

Since square waves and sine waves are used interchangeably to measure the
MTF, a special terminology has arisen.  Instead of the word "cycle," those in
imaging use the term line pair (a dark line next to a light line).  For example,
a spatial frequency would be referred to as 25 line pairs per millimeter,
instead of 25 cycles per millimeter. 

The width of the PSF doesn't track well with human perception and is
difficult to measure.  The MTF methods are in the wrong domain for
understanding how resolution affects the encoded information.  Is there a
more favorable alternative?  The answer is yes, the line spread function
(LSF) and the edge response.  As shown in Fig. 25-3, the line spread
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a.  Line Spread Function (LSF) b.  Edge Response
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FIGURE 25-3
Line spread function and edge response.  The line spread function (LSF) is the  derivative of the edge response.
The width of the LSF is usually expressed as the Full-Width-at-Half-Maximum (FWHM).  The width of the
edge response is usually quoted by the 10% to 90% distance. 

function is the response of the system to a thin line across the image.
Similarly, the edge response is how the system responds to a sharp  straight
discontinuity (an edge).  Since a line is the derivative (or first difference) of an
edge, the LSF is the derivative (or first difference) of the edge response. The
single parameter measurement used here is the distance required for the edge
response to rise from 10% to 90%.  

There are many advantages to using the edge response for measuring resolution.
First, the measurement is in the same form as the image information is encoded.
In fact, the main reason for wanting to know the resolution of a system is to
understand how the edges in an image are blurred.  The second advantage is
that the edge response is simple to measure because  edges are easy to generate
in images.  If needed, the LSF can easily be found by taking the first difference
of the edge response.

The third advantage is that all common edges responses have a similar shape,
even though they may originate from drastically different PSFs.  This is shown
in Fig. 25-4a, where the edge responses of the pillbox, Gaussian, and
exponential PSFs are displayed.  Since the shapes are similar, the 10%-90%
distance is an excellent single parameter measure of resolution.  The fourth
advantage is that the MTF can be directly found by taking the one-dimensional
FFT of the LSF (unlike the PSF to MTF calculation that must use a two-
dimensional Fourier transform).  Figure 25-4b shows the MTFs corresponding
to the edge responses of (a).  In other words, the curves in (a) are converted
into the curves in (b) by taking the first difference (to find the LSF), and then
taking the FFT.
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FIGURE 25-4
Edge response and MTF.  Figure (a) shows the edge responses of three PSFs: (P) pillbox, (G) Gaussian, and
(E) exponential.  Each edge response has a 10% to 90% rise distance of 1 unit.  Figure (b) shows the
corresponding MTF curves, which are similar above the 10% level.  Limiting resolution is a vague term
indicating the frequency where the MTF has an amplitude of 3% to 10%.  
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The fifth advantage is that similar edge responses have similar MTF curves, as
shown in Figs. 25-4 (a) and (b).  This allows us to easily convert between the
two measurements.  In particular, a system that has a 10%-90% edge response
of x distance, has a limiting resolution (10% contrast) of about 1 line pair per
x distance.  The units of the "distance" will depend on the type of system being
dealt with.  For example, consider three different imaging systems that have
10%-90% edge responses of  0.05 mm, 0.2 milliradian and 3.3 pixels.  The
10% contrast level on the corresponding MTF curves will occur at about: 20
lp/mm, 5 lp/milliradian and 0.33 lp/pixel, respectively.  

Figure 25-5 illustrates the mathematical relationship between the PSF and the
LSF.  Figure (a) shows a pillbox PSF, a circular area of value 1, displayed as
white, surrounded by a region of all zeros, displayed as gray.  A profile of the
PSF (i.e., the pixel values along a line drawn across the center of the image)
will be a rectangular pulse.  Figure (b) shows the corresponding LSF.   As
shown, the LSF is mathematically equal to the integrated profile of the PSF.
This is found by sweeping across the image in some direction, as illustrated by
the rays (arrows).  Each value in the integrated profile is the sum of the pixel
values along the corresponding ray.
 
In this example where the rays are vertical, each point in the integrated profile
is found by adding all the pixel values in each column.  This corresponds to the
LSF of a line that is vertical in the image.  The LSF of a line that is horizontal
in the image is found by summing all of the pixel values in each row.  For
continuous images these concepts are the same, but the summations are
replaced by integrals.

As shown in this example, the LSF can be directly calculated from the PSF.
However, the PSF cannot always be calculated from the LSF.  This is because
the PSF contains information about the spatial resolution in all directions,
while the LSF is limited to only one specific direction.  A system
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a.  Point Spread Function

b.  "Integrated" profile of
the PSF (the LSF)

FIGURE 25-5
Relationship between the PSF and LSF.  A
pillbox PSF is shown in (a).  Any row or
column through the white center will be a
rectangular pulse.  Figure (b) shows the
corresponding LSF, equivalent to an
integrated profile of the PSF.  That is, the
LSF is found by sweeping across the
image in some direction and adding
(integrating) the pixel values along each
ray.  In the direction shown, this is done
by adding all the pixels in each column. 

has only one PSF, but an infinite number of LSFs, one for each angle.   For
example, imagine a system that has an oblong PSF.  This makes the spatial
resolution different in the vertical and horizontal directions, resulting in the
LSF being different in these directions.  Measuring the LSF at a single
angle does not provide enough information to calculate the complete PSF
except in the special instance where the PSF is circularly symmetric.
Multiple LSF measurements at various angles make it possible to calculate
a non-circular PSF; however, the mathematics is quite involved and usually
not worth the effort.  In fact, the problem of calculating the PSF from a
number of LSF measurements is exactly the same problem faced in
computed tomography, discussed later in this chapter.  

As a practical matter, the LSF and the PSF are not dramatically different for
most imaging systems, and it is very common to see one used as an
approximation for the other.  This is even more justifiable considering that
there are two common cases where they are identical: the rectangular PSF  has
a rectangular LSF (with the same widths), and the Gaussian PSF has a
Gaussian LSF (with the same standard deviations).

These concepts can be summarized into two skills: how to evaluate a
resolution specification presented to you, and how to measure a resolution
specification of your own.  Suppose you come across an advertisement
stating:  "This system will resolve 40 line pairs per millimeter."  You
should interpret this to mean:  "A sinusoid of 40 lp/mm will have its
amplitude reduced to 3%-10% of its true value, and will be just barely
visible in the image."  You should also do the mental calculation that 40
lp/mm @ 10% contrast is equal to a 10%-90% edge response of 1/(40
lp/mm) = 0.025 mm.  If the MTF specification is for a 3% contrast level,
the edge response will be about 1.5 to 2 times wider.

When you measure the spatial resolution of an imaging system, the steps are
carried out in reverse.  Place a sharp edge in the image, and measure the
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resulting edge response.  The 10%-90% distance of this curve is the best single
parameter measurement of the system's resolution.  To keep your boss and the
marketing people happy, take the first difference of the edge response to find
the LSF, and then use the FFT to find the MTF.

Sample Spacing and Sampling Aperture
    
Figure 25-6 shows two extreme examples of sampling, which we will call a
perfect detector and a blurry detector.  Imagine (a) being the surface of
an imaging detector, such as a CCD.   Light striking anywhere inside one of the
square pixels will contribute only to that pixel value, and no others.  This is
shown in the figure by the black sampling aperture exactly filling one of the
square pixels.  This is an optimal situation for an image detector, because all
of the light is detected, and there is no overlap or crosstalk between adjacent
pixels.  In other words, the sampling aperture is exactly equal to the sample
spacing.

The alternative example is portrayed in (e).  The sampling aperture is
considerably larger than the sample spacing, and it follows a Gaussian
distribution.  In other words, each pixel in the detector receives a contribution
from light striking the detector in a region around the pixel.  This should sound
familiar, because it is the output side viewpoint of convolution.  From the
corresponding input side viewpoint, a narrow beam of light striking the detector
would contribute to the value of several neighboring pixels, also according to
the Gaussian distribution.

Now turn your attention to the edge responses of the two examples.  The
markers in each graph indicate the actual pixel values you would find in an
image, while the connecting lines show the underlying curve that is being
sampled.  An important concept is that the shape of this underlying curve is
determined only by the sampling aperture.  This means that the resolution in
the final image can be limited in two ways.  First, the underlying curve may
have poor resolution, resulting from the sampling aperture being too large.
Second, the sample spacing may be too large, resulting in small details being
lost between the samples.   Two edge response curves are presented for each
example, illustrating that the actual samples can fall anywhere along the
underlying curve.  In other words, the edge being imaged may be sitting exactly
upon a pixel, or be straddling two pixels.  Notice that the perfect detector has
zero or one sample on the rising part of the edge.  Likewise, the blurry detector
has three to four samples on the rising part of the edge.

What is limiting the resolution in these two systems?  The answer is
provided by the sampling theorem.  As discussed in Chapter 3, sampling
captures all frequency components below one-half of the sampling rate,
while higher frequencies are lost due to aliasing.  Now look at the MTF
curve in (h).  The sampling aperture of the blurry detector has removed all
frequencies greater than one-half the sampling rate; therefore, nothing is
lost during sampling. This means that the resolution of this system is
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FIGURE 25-7
Contrast detection.  The human eye can detect a minimum contrast of about 0.5 to 5%, depending on the
observation conditions.  100% contrast is the difference between pure black and pure white.

completely limited by the sampling aperture, and not the sample spacing. Put
another way, the sampling aperture has acted as an antialias filter, allowing
lossless sampling to take place.   

In comparison, the MTF curve in (d) shows that both processes are limiting the
resolution of this system.  The high-frequency fall-off of the MTF curve
represents information lost due to the sampling aperture.   Since the MTF
curve has not dropped to zero before a frequency of 0.5, there is also
information lost during sampling, a result of the finite sample spacing.  Which
is limiting the resolution more?  It is difficult to answer this question with a
number, since they degrade the image in different ways.  Suffice it to say that
the resolution in the perfect detector (example 1) is mostly limited by the
sample spacing. 

While these concepts may seem difficult, they reduce to a very simple rule for
practical usage.  Consider a system with some 10%-90% edge response
distance, for example 1 mm.  If the sample spacing is greater than 1 mm (there
is less than one sample along the edge), the system will be limited by the
sample spacing.  If the sample spacing is less than 0.33 mm  (there are more
than 3 samples along the edge), the resolution will be limited by the sampling
aperture.  When a system has 1-3 samples per edge, it will be limited by both
factors.

Signal-to-Noise Ratio

An object is visible in an image because it has a different brightness than its
surroundings.  That is, the contrast of the object (i.e., the signal) must
overcome the image noise.   This can be broken into two classes: limitations of
the eye, and limitations of the data.

Figure 25-7 illustrates an experiment to measure the eye's ability to detect
weak signals.  Depending on the observation conditions, the human eye can
detect a minimum contrast of 0.5% to 5%.  In other words, humans can
distinguish about 20 to 200 shades of gray between the blackest black and the
whitest white.  The exact number depends on a variety of factors, such
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FIGURE 25-8
Minimum detectable SNR.  An object is visible in an image only if its contrast is large enough to overcome the
random image noise.  In this example, the three squares have SNRs of 2.0, 1.0 and 0.5 (where the SNR is
defined as the contrast of the object divided by the standard deviation of the noise).
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as the brightness of the ambient lightning, the distance between the two regions
being compared, and how the grayscale image is formed (video monitor,
photograph, halftone, etc.).   

The grayscale transform of Chapter 23 can be used to boost the contrast of a
selected range of pixel values, providing a valuable tool in overcoming the
limitations of the human eye.  The contrast at one brightness level is increased,
at the cost of reducing the contrast at another brightness level.  However, this
only works when the contrast of the object is not lost in random image noise.
This is a more serious situation; the signal does not contain enough information
to reveal the object, regardless of the performance of the eye.  

Figure 25-8 shows an image with three squares having contrasts of 5%, 10%,
and 20%.  The background contains normally distributed random noise with a
standard deviation of about 10% contrast.  The SNR is defined as the contrast
divided by the standard deviation of the noise, resulting in the three squares
having SNRs of 0.5, 1.0 and 2.0.  In general, trouble begins when the SNR
falls below about 1.0.  
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The exact value for the minimum detectable SNR depends on the size of the
object; the larger the object, the easier it is to detect.  To understand this,
imagine smoothing the image in Fig. 25-8 with a 3×3 square filter kernel.  This
leaves the contrast the same, but reduces the noise by a factor of three (i.e., the
square root of the number of pixels in the kernel).  Since the SNR is tripled,
lower contrast objects can be seen.  To see fainter objects, the filter kernel can
be made even larger.  For example, a 5×5 kernel improves the SNR by a factor
of .  This strategy can be continued until the filter kernel is equal to the25 ' 5
size of the object being detected.   This means the ability to detect an object is
proportional to the square-root of its area.  If an object's diameter is doubled,
it can be detected in twice as much noise. 

Visual processing in the brain behaves in much the same way, smoothing the
viewed image with various size filter kernels in an attempt to recognize low
contrast objects.  The three profiles in Fig. 25-8 illustrate just how good
humans are at detecting objects in noisy environments.  Even though the objects
can hardly be identified in the profiles, they are obvious in the image.  To
really appreciate the capabilities of the human visual system, try writing
algorithms that operate in this low SNR environment.  You'll be humbled by
what your brain can do, but your code can't!

Random image noise comes in two common forms.  The first type, shown in
Fig. 25-9a, has a constant amplitude.  In other words, dark and light regions in
the image are equally noisy.  In comparison, (b) illustrates noise that increases
with the signal level, resulting in the bright areas being more noisy than the
dark ones.  Both sources of noise are present in most images, but one or the
other is usually dominant.  For example, it is common for the noise to decrease
as the signal level is decreased, until a plateau of constant amplitude noise is
reached. 

A common source of constant amplitude noise is the video preamplifier.  All
analog electronic circuits produce noise.  However, it does the most harm
where the signal being amplified is at its smallest, right at the CCD or other
imaging sensor.   Preamplifier noise originates from the random motion of
electrons in the transistors.  This makes the noise level depend on how the
electronics are designed, but not on the level of the signal being amplified.  For
example, a typical CCD camera will have an SNR of about 300 to 1000 (40
to 60 dB), defined as the full scale signal level divided by the standard
deviation of the constant amplitude noise.

Noise that increases with the signal level results when the image has been
represented by a small number of individual particles.  For example, this
might be the x-rays passing through a patient, the light photons entering a
camera, or the electrons in the well of a CCD.  The mathematics governing
these variations are called counting statistics or Poisson statistics.
Suppose that the face of a CCD is uniformly illuminated such that an average
of 10,000 electrons are generated in each well.  By sheer chance, some wells
will have more electrons, while some will have less.  To be more exact, the
number of electrons will be normally distributed with a mean of 10,000, with
some standard deviation that describes how much variation there is from
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FIGURE 25-9
Image noise.  Random noise in images takes two general forms.  In (a), the amplitude of the noise remains constant
as the signal level changes.  This is typical of electronic noise.  In (b), the amplitude of the noise increases as the
square-root of the signal level.  This type of noise originates from the detection of a small number of particles, such
as light photons, electrons, or x-rays.
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F ' N

SNR ' N

EQUATION 25-1
Poisson statistics. In a Poisson distributed
signal, the mean, µ, is the average number
of individual particles, N.  The standard
deviation, F, is equal to the square-root of
the average number of individual particles.
The signal-to-noise ratio (SNR) is the mean
divided by the standard deviation.

µ ' N   

well-to-well.  A key feature of Poisson statistics is that the standard deviation
is equal to the square-root of the number of individual particles.  That is, if
there are N particles in each pixel, the mean is equal to N and the standard
deviation is equal to .  This makes the signal-to-noise ratio equal to ,N N/ N
or simply, .  In equation form:N

In the CCD example, the standard deviation is .  Likewise the10,000 ' 100
signal-to-noise ratio is also .  If the average number of electrons10,000 ' 100
per well is increased to one million, both the standard deviation and the SNR
increase to 1,000.  That is, the noise becomes larger as the signal becomes



The Scientist and Engineer's Guide to Digital Signal Processing436

larger, as shown in Fig. 25-9b.  However, the signal is becoming larger
faster than the noise, resulting in an overall improvement in the SNR.
Don't be confused into thinking that a lower signal will provide less noise
and therefore better information.  Remember, your goal is not to reduce the
noise, but to extract a signal from the noise.  This makes the SNR the key
parameter.

Many imaging systems operate by converting one particle type to another.  For
example, consider what happens in a medical x-ray imaging system.  Within an
x-ray tube, electrons strike a metal target, producing x-rays.  After passing
through the patient, the x-rays strike a vacuum tube detector known as an
image intensifier.  Here the x-rays are subsequently converted into light
photons, then electrons, and then back to light photons.  These light photons
enter the camera where they are converted into electrons in the well of a CCD.
In each of these intermediate forms, the image is represented by a finite number
of  particles, resulting in added noise as dictated by  Eq. 25-1.  The final SNR
reflects the combined noise of all stages; however, one stage is usually
dominant.  This is the stage with the worst SNR because it has the fewest
particles.  This limiting stage is called the quantum sink.  

In night vision systems, the quantum sink is the number of light photons that
can be captured by the camera.  The darker the night, the noisier the final
image.  Medical x-ray imaging is a similar example; the quantum sink is the
number of x-rays striking the detector.  Higher radiation levels provide less
noisy images at the expense of more radiation to the patient.
  
When is the noise from Poisson statistics the primary noise in an image?  It is
dominant whenever the noise resulting from the quantum sink is greater than
the other sources of noise in the system, such as from the electronics.  For
example, consider a typical CCD camera with an SNR of 300.  That is, the
noise from the CCD preamplifier is 1/300th of the full scale signal.  An
equivalent noise would be produced if the quantum sink of the system contains
90,000 particles per pixel.  If the quantum sink has a smaller number of
particles, Poisson noise will dominate the system.  If the quantum sink has a
larger number of particles, the preamplifier noise will be predominant.
Accordingly, most CCD's are designed with a full well capacity of 100,000 to
1,000,000 electrons, minimizing the Poisson noise.

Morphological Image Processing

The identification of objects within an image can be a very difficult task.
One way to simplify the problem is to change the grayscale image into a
binary image, in which each pixel is restricted to a value of either 0 or 1.
The techniques used on these binary images go by such names as: blob
analysis, connectivity analysis, and morphological image processing
(from the Greek word morphe, meaning shape or form).  The foundation of
morphological processing is in the mathematically rigorous field of set
theory; however, this level of sophistication is seldom needed.  Most
morphological algorithms are simple logic operations and very ad hoc.  In
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a.  Original b.  Erosion c.  Dilation

d.  Opening e.  Closing
FIGURE 25-10
Morphological operations.  Four basic
morphological operations are used in  the
processing of binary images: erosion,
dilation, opening, and closing.  Figure (a)
shows an example binary image. Figures
(b) to (e) show the result of applying
these operations to the image in (a). 

other words, each application requires a custom solution developed by trial-
and-error.  This is usually more of an art than a science.  A bag of tricks is
used rather than standard algorithms and formal mathematical properties. Here
are some examples. 

Figure 25-10a shows an example binary image.  This might represent an enemy
tank in an infrared image, an asteroid in a space photograph, or a suspected
tumor in a medical x-ray.  Each pixel in the background is displayed as white,
while each pixel in the object is displayed as black.  Frequently,  binary images
are formed by thresholding a grayscale image; pixels with a value greater than
a threshold are set to 1, while pixels with a value below the threshold are set
to 0.  It is common for the grayscale image to be processed with linear
techniques before the thresholding.  For instance, illumination flattening
(described in Chapter 24) can often improve the quality of the initial binary
image. 

Figures (b) and (c) show how the image is changed by the two most common
morphological operations, erosion and dilation.  In erosion, every object pixel
that is touching a background pixel is changed into a background pixel.  In
dilation, every background pixel that is touching an object pixel is changed into
an object pixel.  Erosion makes the objects smaller, and can break a single
object into multiple objects.  Dilation makes the objects larger, and can merge
multiple objects into one.   

As shown in (d), opening is defined as an erosion followed by a dilation.
Figure (e) shows the opposite operation of closing, defined as a dilation
followed by an erosion.   As illustrated by these examples, opening removes
small islands and thin filaments of object pixels.   Likewise, closing removes
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FIGURE 25-11
Binary skeletonization.  The binary image of a fingerprint, (a), contains ridges that are many pixels
wide. The skeletonized version, (b), contains ridges only a single pixel wide.

a.  Original fingerprint b.  Skeletonized fingerprint

islands and thin filaments of background pixels. These techniques are useful
for handling noisy images where some pixels have the wrong binary value.  For
instance, it might be known that an object cannot contain a "hole", or that the
object's border must be smooth. 

Figure 25-11 shows an example of morphological processing.  Figure (a) is the
binary image of a fingerprint.  Algorithms have been developed to analyze
these patterns, allowing individual fingerprints to be matched with those in a
database.   A common step in these algorithms is shown in (b), an operation
called skeletonization.  This simplifies the image by removing redundant
pixels; that is, changing appropriate pixels from black to white.  This results
in each ridge being turned into a line only a single pixel wide. 

Tables 25-1 and 25-2 show the skeletonization program.  Even though the
fingerprint image is binary, it is held in an array where each pixel can run from
0 to 255.  A black pixel is denoted by 0, while a white pixel is denoted by 255.
As shown in Table 25-1, the algorithm is composed of 6 iterations that
gradually erode the ridges into a thin line.  The number of iterations  is chosen
by trial and error.  An alternative would be to stop when an iteration makes no
changes.

During an iteration, each pixel in the image is evaluated for being removable;
the pixel meets a set of criteria for being changed from black to white.  Lines
200-240 loop through each pixel in the image, while  the subroutine in Table
25-2 makes the evaluation.  If the pixel under consideration is not removable,
the subroutine does nothing.  If the pixel is removable, the subroutine changes its
value from 0 to 1.  This indicates that the pixel is still black, but will be changed
to white at the end of the iteration.  After all the pixels have been evaluated,
lines 260-300 change the value of the marked pixels from 1 to 255. This two-stage
process results in the thick ridges being eroded equally from all directions,
rather than a pattern based on how the rows and columns are scanned.
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100 'SKELETONIZATION PROGRAM
110 'Object pixels have a value of 0 (displayed as black)
120 'Background pixels have a value of 255 (displayed as white)
130 '
140 DIM X%[149,149]  'X%[  ,  ] holds the image being processed
150 '
160 GOSUB XXXX                 'Mythical subroutine to load X%[ , ]
170 '
180 FOR ITER% = 0 TO 5    'Run through six iteration loops
190 '
200   FOR R% = 1 TO 148  'Loop through each pixel in the image.
210   FOR C% = 1 TO 148    'Subroutine 5000 (Table 25-2) indicates which 
220     GOSUB 5000              'pixels can be changed from black to white,
230   NEXT C%                   'by marking the pixels with a value of 1.
240   NEXT R%
250 '
260   FOR R% = 0 TO 149   'Loop through each pixel in the image changing
270   FOR C% = 0 TO 149    'the marked pixels from black to white.
280     IF X%(R%,C%) = 1 THEN X%(R%,C%) = 255
290   NEXT C%
300   NEXT R%
310 '
320 NEXT ITER%
330 '
340 END

          TABLE 25-1

The decision to remove a pixel is based on four rules, as contained in the
subroutine shown in Table 25-2.  All of these rules must be satisfied for a pixel
to be changed from black to white.  The first three rules are rather simple,
while the fourth is quite complicated.  As shown in Fig. 25-12a, a pixel at
location [R,C] has eight neighbors.  The four neighbors in the horizontal and
vertical directions (labeled 2,4,6,8) are frequently called the close neighbors.
The diagonal pixels (labeled 1,3,5,7) are correspondingly called the distant
neighbors.  The four rules are as follows:

Rule one: The pixel under consideration must presently be black.  If the pixel
is already white, no action needs to be taken.  

Rule two:  At least one of the pixel's close neighbors must be white.  This
insures that the erosion of the thick ridges takes place from the outside.  In
other words, if a pixel is black, and it is completely surrounded by black pixels,
it is to be left alone on this iteration.   Why use only the close neighbors,
rather than all of the neighbors?  The answer is simple: running the algorithm
both ways shows that it works better.   Remember, this is very common in
morphological image processing; trial and error is used to find if one technique
performs better than another. 

Rule three: The pixel must have more than one black neighbor.  If it has only
one, it must be the end of a line, and therefore shouldn't be removed.
  
Rule four: A pixel cannot be removed if it results in its neighbors being
disconnected.   This is so each ridge is changed into a continuous line, not a
group of interrupted segments.  As shown by the examples in Fig. 25-12,
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FIGURE 25-12
Neighboring pixels.  A pixel at row and column
[R,C] has eight neighbors, referred to by the
numbers in (a). Figures (b) and (c) show
examples where the neighboring pixels are
connected and unconnected,  respectively.  This
definition is used by rule number four of the
skeletonization algorithm.
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connected means that all of the black neighbors touch each other.  Likewise,
unconnected means that the black neighbors form two or more  groups.  

The algorithm for determining if the neighbors are connected or unconnected
is based on counting the black-to-white transitions between adjacent
neighboring pixels, in a clockwise direction.  For example, if pixel 1 is black
and pixel 2 is white, it is considered a black-to-white transition.  Likewise, if
pixel 2 is black and both pixel 3 and 4 are white, this is also a black-to-white
transition.  In total, there are eight locations where a black-to-white transition
may occur.   To illustrate this definition further,  the examples in (b) and (c)
have an asterisk placed by each black-to-white transition.  The key to this
algorithm is that there will be zero or one black-to-white transition if the
neighbors are connected.  More than one such transition indicates that the
neighbors are unconnected.

As additional examples of binary image processing, consider the types of
algorithms that might be useful after the fingerprint is skeletonized.  A
disadvantage of this particular skeletonization algorithm is that it leaves a
considerable amount of fuzz, short offshoots that stick out from the sides of
longer segments.  There are several different approaches for eliminating
these artifacts.  For example, a program might loop through the image
removing the pixel at the end of every line.  These pixels are identified
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5000 ' Subroutine to determine if the pixel at X%[R%,C%] can be removed.
5010 ' If all four of the rules are satisfied, then X%(R%,C%], is set to a value of 1, 
5020 ' indicating it should be removed at the end of the iteration.
5030 '
5040 'RULE #1:  Do nothing if the pixel already white
5050 IF X%(R%,C%) = 255 THEN RETURN
5060 '
5070 '
5080 'RULE #2:  Do nothing if all of the close neighbors are black
5090 IF  X%[R% -1,C%  ] <> 255 AND X%[R%  ,C%+1] <> 255 AND 

X%[R%+1,C%  ] <> 255 AND X%[R%  ,C% -1] <> 255  THEN RETURN
5100 '
5110 '
5120 'RULE #3:  Do nothing if only a single neighbor pixel is black
5130 COUNT% = 0
5140 IF X%[R% -1,C% -1] = 0 THEN COUNT% = COUNT% + 1
5150 IF X%[R% -1,C%    ] = 0 THEN COUNT% = COUNT% + 1
5160 IF X%[R% -1,C%+1] = 0 THEN COUNT% = COUNT% + 1
5170 IF X%[R%    ,C%+1] = 0 THEN COUNT% = COUNT% + 1
5180 IF X%[R%+1,C%+1] = 0 THEN COUNT% = COUNT% + 1
5190 IF X%[R%+1,C%    ] = 0 THEN COUNT% = COUNT% + 1
5200 IF X%[R%+1,C% -1] = 0 THEN COUNT% = COUNT% + 1
5210 IF X%[R%    ,C% -1] = 0 THEN COUNT% = COUNT% + 1
5220 IF COUNT% = 1 THEN RETURN
5230 '
5240 '
5250 'RULE 4:  Do nothing if the neighbors are unconnected. 
5260 'Determine this by counting the black-to-white transitions
5270 'while moving clockwise through the 8 neighboring pixels.
5280 COUNT% = 0
5290 IF X%[R% -1,C% -1] = 0 AND X%[R% -1,C%    ] > 0  THEN COUNT% = COUNT% + 1
5300 IF X%[R% -1,C%    ] = 0 AND X%[R% -1,C%+1] > 0  AND X%[R%  ,C%+1] > 0  

THEN COUNT% = COUNT% + 1
5310 IF X%[R% -1,C%+1] = 0 AND X%[R%    ,C%+1] > 0  THEN COUNT% = COUNT% + 1
5320 IF X%[R%    ,C%+1] = 0 AND X%[R%+1,C%+1] > 0  AND X%[R%+1,C%  ] > 0  

THEN COUNT% = COUNT% + 1
5330 IF X%[R%+1,C%+1] = 0 AND X%[R%+1,C%    ] > 0  THEN COUNT% = COUNT% + 1
5340 IF X%[R%+1,C%    ] = 0 AND X%[R%+1,C% -1] > 0  AND X%[R%  ,C%-1] > 0  

THEN COUNT% = COUNT% + 1
5350 IF X%[R%+1,C% -1] = 0 AND X%[R%    ,C% -1] > 0  THEN COUNT% = COUNT% + 1
5360 IF X%[R%    ,C% -1] = 0 AND X%[R% -1,C% -1] > 0  AND X%[R%-1,C%  ] > 0  

THEN COUNT% = COUNT% + 1
5370 IF COUNT% > 1 THEN RETURN
5380 '
5390 '
5400 'If all rules are satisfied, mark the pixel to be set to white at the end of the iteration
5410 X%(R%,C%) = 1
5420 '
5430 RETURN

         TABLE 25-2

by having only one black neighbor.  Do this several times and the fuzz is
removed at the expense of making each of the correct lines shorter.  A better
method would loop through the image identifying branch pixels  (pixels that
have more than two neighbors).  Starting with each branch pixel, count the
number of pixels in each offshoot.  If the number of pixels in an offshoot is less
than some value (say, 5), declare it to be fuzz, and change the pixels in the
branch from black to white.
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Another algorithm might change the data from a bitmap to a vector mapped
format.  This involves creating a list of the ridges contained in the image and
the pixels contained in each ridge.  In the vector mapped form, each ridge in
the fingerprint has an individual identity, as opposed to an image composed of
many unrelated pixels.  This can be accomplished by looping through the image
looking for the endpoints of each line, the pixels that have only one black
neighbor.  Starting from the endpoint, each line is traced from pixel to
connecting pixel.   After the opposite end of the line is reached, all the traced
pixels are declared to be a single object, and treated accordingly in future
algorithms.

Computed Tomography

A basic problem in imaging with x-rays (or other penetrating radiation) is
that a two-dimensional image is obtained of a three-dimensional object.
This means that structures can overlap in the final image, even though they
are completely separate in the object.  This is particularly troublesome in
medical diagnosis where there are many anatomic structures that can
interfere with what the physician is trying to see.  During the 1930's, this
problem was attacked by moving the x-ray source and detector in a
coordinated motion during image formation.  From the geometry of this
motion, a single plane within the patient remains in focus, while structures
outside this plane become blurred.  This is analogous to a camera being
focused on an object at 5 feet, while objects at a distance of  1 and 50 feet
are blurry.  These related techniques based on motion blurring are now
collectively called classical tomography.  The word tomography means "a
picture of a plane."

In spite of being well developed for more than 50 years, classical tomography
is rarely used.  This is because it has a significant limitation:  the interfering
objects are not removed from the image, only blurred.  The resulting image
quality is usually too poor to be of practical use.  The long sought solution was
a system that could create an image representing a 2D slice through a 3D
object with no interference from other structures in the 3D object.  

This problem was solved in the early 1970s with the introduction of a
technique called computed tomography (CT).  CT revolutionized the
medical x-ray field with its unprecedented ability to visualize the anatomic
structure of the body.  Figure 25-13 shows a typical medical CT image.
Computed tomography was originally introduced to the marketplace under
the names Computed Axial Tomography and CAT scanner.  These terms are
now frowned upon in the medical field, although you hear them used
frequently by the general public.  

Figure 25-14 illustrates a simple geometry for acquiring a CT slice through
the center of the head.   A narrow pencil beam of x-rays is passed from the
x-ray source to the x-ray detector.  This means that the measured value at
the detector is related to the total amount of material placed anywhere



Chapter 25- Special Imaging Techniques 443

K S C

L
A

LEFT RIGHT

FIGURE 25-13
Computed tomography image.  This CT slice is
of a human abdomen, at the level of the navel.
Many organs are visible, such as the (L) Liver,
(K) Kidney, (A) Aorta, (S) Spine, and (C) Cyst
covering the right kidney.  CT can visualize
internal anatomy far better than conventional
medical x-rays.
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FIGURE 25-14
CT data acquisition.  A simple CT system
passes a narrow beam of x-rays through the
body from source to detector.  The source
and detector are then translated to obtain a
complete view.  The remaining views are
obtained by rotating the source and detector
in about 1E increments, and repeating the
translation process. 

along the beam's path.  Materials such as bone and teeth block more of the x-
rays, resulting in a lower signal compared to soft tissue and fat.  As shown in
the illustration, the source and detector assemblies are translated to acquire a
view (CT jargon) at this particular angle.  While this figure shows only a
single view being acquired, a complete CT scan requires 300 to 1000 views
taken at rotational increments of about 0.3E to 1.0E.  This is accomplished by
mounting the x-ray source and detector on a rotating gantry that surrounds the
patient.  A key feature of CT data acquisition is that x-rays pass only through
the slice of the body being examined.  This is  unlike classical tomography
where x-rays are passing through structures that you try to suppress in the final
image.  Computed tomography doesn't allow information from irrelevant
locations to even enter the acquired data. 
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Several preprocessing steps are usually needed before the image reconstruction
can take place.  For instance, the logarithm must be taken of each x-ray
measurement.  This is because x-rays decrease in intensity exponentially as
they pass through material.  Taking the logarithm provides a signal that is
linearly related to the characteristics of the material being measured.   Other
preprocessing steps are used to compensate for the use of polychromatic (more
than one energy) x-rays, and multielement detectors (as opposed to the single
element shown in Fig. 25-14).  While these are a key step in the overall
technique, they are not related to the reconstruction algorithms and we won't
discuss them further.  

Figure 25-15 illustrates the relationship between the measured views and the
corresponding image.  Each sample acquired in a CT system is equal to the sum
of the image values along a ray pointing to that sample.  For example, view 1
is found by adding all the pixels in each row.  Likewise, view 3 is found by
adding all the pixels in each column.  The other views, such as view 2, sum the
pixels along rays that are at an angle.

There are four main approaches to calculating the slice image given the set of
its views.  These are called CT reconstruction algorithms.  The first method
is totally impractical, but provides a better understanding of the problem.  It is
based on solving many simultaneous linear equations.  One equation can be
written for each measurement.   That is, a particular sample in a particular
profile is the sum of a particular group of pixels in the image.  To calculate N 2

unknown variables (i.e., the  image pixel values), there must be N 2

independent equations, and therefore  measurements.   Most CT scannersN 2

acquire about 50% more samples than rigidly required by this analysis.  For
example, to reconstruct a 512×512 image, a system might take 700 views with
600 samples in each view.  By making the problem overdetermined in this
manner, the final image has reduced noise and artifacts.  The problem with this
first method of CT reconstruction is computation time.  Solving several hundred
thousand simultaneous linear equations is an daunting task.

The second method of CT reconstruction uses iterative techniques to calculate
the  final image in small steps.  There are several variations of this method: the
Algebraic Reconstruction Technique (ART),  Simultaneous Iterative
Reconstruction Technique (SIRT), and Iterative Least Squares Technique
(ILST).  The difference between these methods is how the successive
corrections are made: ray-by-ray, pixel-by-pixel, or simultaneously correcting
the entire data set, respectively.   As an example of these techniques, we will
look at ART.

To start the ART algorithm, all the pixels in the image array are set to some
arbitrary value.   An iterative procedure is then used to gradually change
the image array to correspond to the profiles.  An iteration cycle consists
of looping through each of the measured data points.  For each measured
value, the following question is asked:  how can the pixel values in the
array  be  changed to  make them consis tent  wi th  th is  par t icular
measurement?  In other words, the measured sample is compared with the
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FIGURE 25-15
CT views. Computed tomography acquires a set of views and then reconstructs the corresponding
image.  Each sample in a view is equal to the sum of the image values along the ray that points to that
sample.  In this example, the image is a small pillbox surrounded by zeros. While only three views
are shown here, a typical CT scan uses hundreds of views at slightly different angles.
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view 3

sum of the image pixels along the ray pointing to the sample.  If the ray sum
is lower than the measured sample, all the pixels along the ray are increased
in value.  Likewise, if the ray sum is higher than the measured sample, all of
the pixel values along the ray are decreased.  After the first complete iteration
cycle,  there will still be an error between the ray sums and the measured
values. This is because the changes made for any one measurement disrupts all
the previous corrections made.  The idea is that the errors become smaller with
repeated iterations until the image converges to the proper solution.

Iterative techniques are generally slow, but they are useful when better
algorithms are not available.  In fact, ART was used in the first commercial
medical CT scanner released in 1972, the EMI Mark I.  We will revisit
iterative techniques in the next chapter on neural networks.  Development of
the third and forth methods have almost entirely replaced iterative techniques
in commercial CT products.

The last two reconstruction algorithms are based on formal mathematical
solutions to the problem.  These are elegant examples of DSP.  The third
method is called filtered backprojection.  It is a modification of an older



The Scientist and Engineer's Guide to Digital Signal Processing446

-1

0

1

2

3

a.  Using 3 views b.  Using many views

FIGURE 25-16
Backprojection.  Backprojection reconstructs an image by taking each view and smearing it along
the path it was originally acquired.  The resulting image is a blurry version of the correct image.
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technique, called backprojection or simple backprojection.  Figure 25-16
shows that simple backprojection is a common sense approach, but very
unsophisticated.    An individual sample is backprojected by setting all the
image pixels along the ray pointing to the sample to the same value.   In less
technical terms, a backprojection is formed by smearing each view back
through the image in the direction it was originally acquired.  The final
backprojected image is then taken as the sum of all the backprojected views.

While backprojection is conceptually simple, it does not correctly solve the
problem.  As shown in (b), a backprojected image is very blurry.  A single
point in the true image is reconstructed as a circular region that decreases in
intensity away from the center.   In more formal terms, the point spread
function of backprojection is circularly symmetric, and decreases as the
reciprocal of its radius.

Filtered backprojection is a technique to correct the blurring encountered in
simple backprojection.  As illustrated in Fig. 25-17, each view is filtered
before the backprojection to counteract the blurring PSF.  That is, each of the
one-dimensional views is convolved with a one-dimensional filter kernel to
create a set of filtered views.  These filtered views are then backprojected to
provide the reconstructed image, a close approximation to the "correct" image.
In fact, the image produced by filtered backprojection is identical
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FIGURE 25-17
Filtered backprojection. Filtered backprojection reconstructs an image by filtering each view before
backprojection.  This removes the blurring seen in simple backprojection, and results in a
mathematically exact reconstruction of the image.  Filtered backprojection is the most commonly
used algorithm for computed tomography systems.
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to the "correct" image when there are an infinite number of views and an
infinite number of points per view. 

The filter kernel used in this technique will be discussed shortly.  For now,
notice how the profiles have been changed by the filter.  The image in this
example is a uniform white circle surrounded by a black background (a
pillbox).  Each of the acquired views has a flat background with a rounded
region representing the white circle.  Filtering changes the views in two
significant ways.  First, the top of the pulse is made flat, resulting in the final
backprojection creating a uniform signal level within the circle.  Second,
negative spikes have been introduced at the sides of the pulse.  When
backprojected, these negative regions counteract the blur.

The fourth method is called Fourier reconstruction.  In the spatial domain,
CT reconstruction involves the relationship between a two-dimensional image
and its set of one-dimensional views.  By taking the two-dimensional Fourier
transform of the image and the one-dimensional Fourier transform of each of
its views, the problem can be examined in the frequency domain.  As it turns
out, the relationship between an image and its views is far simpler in the
frequency domain than in the spatial domain.  The frequency domain analysis
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FIGURE 25-18
The Fourier Slice Theorem.  The Fourier Slice Theorem describes the relationship between an image and
its views in the frequency domain.  In the spatial domain, each view is found by integrating the image along
rays at a particular angle.  In the frequency domain, the spectrum of each view is a one-dimensional "slice"
of the two-dimensional image spectrum. 
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of this problem is a milestone in CT technology called the Fourier slice
theorem.   

Figure 25-18 shows how the problem looks in both the spatial and the
frequency domains.  In the spatial domain, each view is found by integrating
the image along rays at a particular angle.  In the frequency domain, the
image spectrum is represented in this illustration by a two-dimensional grid.
The spectrum of each view (a one-dimensional signal) is represented by a
dark line superimposed on the grid.  As shown by the positioning of the
lines on the grid, the Fourier slice theorem states that the spectrum of a
view is identical to the values along a line (slice) through the image
spectrum.  For instance, the spectrum of view 1 is the same as the center
column of the image spectrum, and the spectrum of view 3 is the same as
the center row of the image spectrum.  Notice that the spectrum of each
view is positioned on the grid at the same angle that the view was originally
acquired.  All these frequency spectra include the negative frequencies and
are displayed with zero frequency at the center. 

Fourier reconstruction of a CT image requires three steps.  First, the one-
dimensional FFT is taken of each view.  Second, these view spectra are used
to calculate the two-dimensional frequency spectrum of the image, as outlined
by the Fourier slice theorem.  Since the view spectra are arranged radially, and
the correct image spectrum is arranged rectangularly, an interpolation routine
is needed to make the conversion. Third, the inverse FFT is taken of the image
spectrum to obtain the reconstructed image.
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FIGURE 25-19
Backprojection filter.  The frequency response of the backprojection filter is shown in (a), and the
corresponding filter kernel is shown in (b).  Equation 25-2 provides the values for the filter kernel.
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EQUATION 25-2
The filter kernel for filtered
backprojection. Figure 25-19b
shows a graph of this kernel. 

for even values of k

for odd values of k

This "radial to rectangular" conversion is also the key for understanding filtered
backprojection.  The radial arrangement is the spectrum of the backprojected
image, while the rectangular grid is the spectrum of the correct image.  If we
compare one small region of the radial spectrum with the corresponding region
of the rectangular grid, we find that the sample values are identical.  However,
they have a different sample density. The correct spectrum has uniformly
spaced points throughout, as shown by the even spacing of the rectangular grid.
In comparison, the backprojected spectrum has a higher sample density near the
center because of its radial arrangement.  In other words, the spokes of a wheel
are closer together near the hub.  This issue does not affect Fourier
reconstruction because the interpolation is from the values of the nearest
neighbors, not their density. 

The filter in filtered backprojection cancels this unequal sample density.  In
particular, the frequency response of the filter must be the inverse of the
sample density.  Since the backprojected spectrum has a density of 1/f, the
appropriate filter has a frequency response of .   This frequencyH [ f ] ' f
response is shown in Fig. 25-19a.  The filter kernel is then found by taking the
inverse Fourier transform, as shown in (b).  Mathematically, the filter kernel
is given by:
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Before leaving the topic of computed tomography, it should be mentioned
that there are several similar imaging techniques in the medical field.  All
use extensive amounts of DSP.  Positron emission tomography (PET)
involves injecting the patient with a mildly radioactive compound that emits
positrons.  Immediately after emission, the positron annihilates with an
electron, creating two gamma rays that exit the body in exactly opposite
directions. Radiation detectors placed around the patient look for these
back-to-back gamma rays, identifying the location of the line that the
gamma rays traveled along.  Since the point where the gamma rays were
created must be somewhere along this line, a reconstruction algorithm
similar to computed tomography can be used.  This results in an image that
looks similar to CT, except that brightness is related to the amount of the
radioactive material present at each location.  A unique advantage of PET
is that the radioactive compounds can be attached to various substances
used by the body in some manner, such as glucose.  The reconstructed image
is then related to the concentration of this biological substance.  This allows
the imaging of the body's physiology rather than simple anatomy.  For
example, images can be produced showing which portions of the human
brain are involved in various mental tasks.  

A more direct competitor to computed tomography is magnetic resonance
imaging (MRI) , which is now found in most major hospitals.  This
technique was originally developed under the name nuclear magnetic
resonance (NMR).  The name change was for public relations when local
governments protested the use of anything nuclear in their communities.  It
was often an impossible task to educate the public that the term nuclear
simply referred to the fact that all atoms contain a nucleus.   An MRI scan
is conducted by placing the patient in the center of a powerful magnet.
Radio waves in conjunction with the magnetic field cause selected nuclei in
the body to resonate, resulting in the emission of secondary radio waves.
These secondary radio waves are digitized and form the data set used in the
MRI reconstruction algorithms.   The result is a set of images that appear
very similar to computed tomography.   The advantages of MRI are
numerous: good soft tissue discrimination, flexible slice selection, and not
using potentially dangerous x-ray radiation.   On the negative side, MRI is
a more expensive technique than CT, and poor for imaging bones and other
hard tissues.  CT and MRI will be the mainstays of medical imaging for
many years to come.


