
311

CHAPTER

18
FFT Convolution

This chapter presents two important DSP techniques, the overlap-add method, and FFT
convolution. The overlap-add method is used to break long signals into smaller segments for
easier processing. FFT convolution uses the overlap-add method together with the Fast Fourier
Transform, allowing signals to be convolved by multiplying their frequency spectra. For filter
kernels longer than about 64 points, FFT convolution is faster than standard convolution, while
producing exactly the same result.

The Overlap-Add Method

There are many DSP applications where a long signal must be filtered in
segments. For instance, high fidelity digital audio requires a data rate of
about 5 Mbytes/min, while digital video requires about 500 Mbytes/min. With
data rates this high, it is common for computers to have insufficient memory to
simultaneously hold the entire signal to be processed. There are also systems
that process segment-by-segment because they operate in real time. For
example, telephone signals cannot be delayed by more than a few hundred
milliseconds, limiting the amount of data that are available for processing at
any one instant. In still other applications, the processing may require that the
signal be segmented. An example is FFT convolution, the main topic of this
chapter.

The overlap-add method is based on the fundamental technique in DSP: (1)
decompose the signal into simple components, (2) process each of the
components in some useful way, and (3) recombine the processed components
into the final signal. Figure 18-1 shows an example of how this is done for
the overlap-add method. Figure (a) is the signal to be filtered, while (b) shows
the filter kernel to be used, a windowed-sinc low-pass filter. Jumping to the
bottom of the figure, (i) shows the filtered signal, a smoothed version of (a).
The key to this method is how the lengths of these signals are affected by the
convolution. When an N sample signal is convolved with an M sample

The Scientist and Engineer's Guide to Digital Signal Processing312

filter kernel, the output signal is samples long. For instance, the inputN%M&1
signal, (a), is 300 samples (running from 0 to 299), the filter kernel, (b), is 101
samples (running from 0 to 100), and the output signal, (i), is 400 samples
(running from 0 to 399).

In other words, when an N sample signal is filtered, it will be expanded by
 points to the right. (This is assuming that the filter kernel runs fromM&1

index 0 to M. If negative indexes are used in the filter kernel, the expansion
will also be to the left). In (a), zeros have been added to the signal between
sample 300 and 399 to illustrate where this expansion will occur. Don't be
confused by the small values at the ends of the output signal, (i). This is
simply a result of the windowed-sinc filter kernel having small values near its
ends. All 400 samples in (i) are nonzero, even though some of them are too
small to be seen in the graph.

Figures (c), (d) and (e) show the decomposition used in the overlap-add
method. The signal is broken into segments, with each segment having 100
samples from the original signal. In addition, 100 zeros are added to the right
of each segment. In the next step, each segment is individually filtered by
convolving it with the filter kernel. This produces the output segments shown
in (f), (g), and (h). Since each input segment is 100 samples long, and the
filter kernel is 101 samples long, each output segment will be 200 samples
long. The important point to understand is that the 100 zeros were added to
each input segment to allow for the expansion during the convolution.

Notice that the expansion results in the output segments overlapping each
other. These overlapping output segments are added to give the output
signal, (i). For instance, samples 200 to 299 in (i) are found by adding the
corresponding samples in (g) and (h). The overlap-add method produces
exactly the same output signal as direct convolution. The disadvantage is
a much greater program complexity to keep track of the overlapping
samples.

FFT Convolution

FFT convolution uses the principle that multiplication in the frequency
domain corresponds to convolution in the time domain. The input signal is
transformed into the frequency domain using the DFT, multiplied by the
frequency response of the filter, and then transformed back into the time
domain using the Inverse DFT. This basic technique was known since the
days of Fourier; however, no one really cared. This is because the time
required to calculate the DFT was longer than the time to directly calculate
the convolution. This changed in 1965 with the development of the Fast
Fourier Transform (FFT). By using the FFT algorithm to calculate the
DFT, convolution via the frequency domain can be faster than directly
convolving the time domain signals. The final result is the same; only the
number of calculations has been changed by a more efficient algorithm. For
this reason, FFT convolution is also called high-speed convolution.

Chapter 18- FFT Convolution 313

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

Sample number
0 100 200 300 400

-4

-2

0

2

4

a. Input signal

c. Input segment 1 f. Output segment 1

d. Input segment 2

e. Input segment 3 h. Output segment 3

i. Output signal

g. Output segment 2

 Sample
-50 0 50 100 150

-0.060

0.000

0.060

0.120

0.180

b. Filter
kernel

?

added
zeros

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de
A

m
pl

itu
de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 18-1
The overlap-add method. The goal is to convolve the
input signal, (a), with the filter kernel, (b). This is
done by breaking the input signal into a number of
segments, such as (c), (d) and (e), each padded with
enough zeros to allow for the expansion during the
convolution. Convolving each of the input segments
with the filter kernel produces the output segments,
(f), (g), and (h). The output signal, (i), is then found
by adding the overlapping output segments.

The Scientist and Engineer's Guide to Digital Signal Processing314

FFT convolution uses the overlap-add method shown in Fig. 18-1; only the way
that the input segments are converted into the output segments is changed.
Figure 18-2 shows an example of how an input segment is converted into an
output segment by FFT convolution. To start, the frequency response of the
filter is found by taking the DFT of the filter kernel, using the FFT. For
instance, (a) shows an example filter kernel, a windowed-sinc band-pass filter.
The FFT converts this into the real and imaginary parts of the frequency
response, shown in (b) & (c). These frequency domain signals may not look
like a band-pass filter because they are in rectangular form. Remember, polar
form is usually best for humans to understand the frequency domain, while
rectangular form is normally best for mathematical calculations. These real
and imaginary parts are stored in the computer for use when each segment is
being calculated.

Figure (d) shows the input segment to being processed. The FFT is used to find
its frequency spectrum, shown in (e) & (f). The frequency spectrum of the
output segment, (h) & (i) is then found by multiplying the filter's frequency
response, (b) & (c), by the spectrum of the input segment, (e) & (f). Since
these spectra consist of real and imaginary parts, they are multiplied according
to Eq. 9-1 in Chapter 9. The Inverse FFT is then used to find the output
segment, (g), from its frequency spectrum, (h) & (i). It is important to
recognize that this output segment is exactly the same as would be obtained by
the direct convolution of the input segment, (d), and the filter kernel, (a).

The FFTs must be long enough that circular convolution does not take place
(also described in Chapter 9). This means that the FFT should be the same
length as the output segment, (g). For instance, in the example of Fig. 18-2,
the filter kernel contains 129 points and each segment contains 128 points,
making output segment 256 points long. This calls for 256 point FFTs to be
used. This means that the filter kernel, (a), must be padded with 127 zeros to
bring it to a total length of 256 points. Likewise, each of the input segments,
(d), must be padded with 128 zeros. As another example, imagine you need
to convolve a very long signal with a filter kernel having 600 samples. One
alternative would be to use segments of 425 points, and 1024 point FFTs.
Another alternative would be to use segments of 1449 points, and 2048 point
FFTs.

Table 18-1 shows an example program to carry out FFT convolution. This
program filters a 10 million point signal by convolving it with a 400 point filter
kernel. This is done by breaking the input signal into 16000 segments, with
each segment having 625 points. When each of these segments is convolved
with the filter kernel, an output segment of points is625% 400& 1 ' 1024
produced. Thus, 1024 point FFTs are used. After defining and initializing all
the arrays (lines 130 to 230), the first step is to calculate and store the
frequency response of the filter (lines 250 to 310). Line 260 calls a
mythical subroutine that loads the filter kernel into XX[0] through
XX[399], and sets XX[400] through XX[1023] to a value of zero. The
subroutine in line 270 is the FFT, transforming the 1024 samples held in
XX[] into the 513 samples held in REX[] & IMX[], the real and

Chapter 18- FFT Convolution 315

Sample number
0 64 128 192 256

-0.2

-0.1

0.0

0.1

0.2

0.3

Sample number
0 64 128 192 256

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

Sample number
0 64 128 192 256

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

Frequency
0 64 128

-2.0

-1.0

0.0

1.0

2.0

Frequency
0 64 128

-2.0

-1.0

0.0

1.0

2.0

Frequency
0 64 128

-100

-50

0

50

100

Frequency
0 64 128

-100

-50

0

50

100

Frequency
0 64 128

-100

-50

0

50

100

Frequency
0 64 128

-100

-50

0

50

100

a. Filter kernel

d. Input segment

g. Output segment

b. Real c. Imaginary

e. Real f. Imaginary

h. Real i. Imaginary

Time Domain Frequency Domain

FFT

FFT

IFFT

signal in 0 to 128
zeros in 129 to 255

signal in 0 to 127
zeros in 128 to 255

signal in 0 to 255

255

255

255

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

A
m

pl
itu

de

FIGURE 18-2
FFT convolution. The filter kernel, (a), and the signal segment, (d), are converted into their respective spectra,
(b) & (c) and (e) & (f), via the FFT. These spectra are multiplied, resulting in the spectrum of the output
segment, (h) & (i). The Inverse FFT then finds the output segment, (g).

imaginary parts of the frequency response. These values are transferred into
the arrays REFR[] & IMFR[] (for: REal and IMaginary Frequency Response),
to be used later in the program.

The Scientist and Engineer's Guide to Digital Signal Processing316

The FOR-NEXT loop between lines 340 and 580 controls how the 16000
segments are processed. In line 360, a subroutine loads the next segment to be
processed into XX[0] through XX[624], and sets XX[625] through XX[1023]
to a value of zero. In line 370, the FFT subroutine is used to find this
segment's frequency spectrum, with the real part being placed in the 513 points
of REX[], and the imaginary part being placed in the 513 points of IMX[].
Lines 390 to 430 show the multiplication of the segment's frequency spectrum,
held in REX[] & IMX[], by the filter's frequency response, held in REFR[]
and IMFR[]. The result of the multiplication is stored in REX[] & IMX[],
overwriting the data previously there. Since this is now the frequency spectrum
of the output segment, the IFFT can be used to find the output segment. This is
done by the mythical IFFT subroutine in line 450, which transforms the 513
points held in REX[] & IMX[] into the 1024 points held in XX[], the output
segment.

Lines 470 to 550 handle the overlapping of the segments. Each output segment
is divided into two sections. The first 625 points (0 to 624) need to be
combined with the overlap from the previous output segment, and then written
to the output signal. The last 399 points (625 to 1023) need to be saved so that
they can overlap with the next output segment.

To understand this, look back at Fig 18-1. Samples 100 to 199 in (g) need to
be combined with the overlap from the previous output segment, (f), and can
then be moved to the output signal (i). In comparison, samples 200 to 299 in
(g) need to be saved so that they can be combined with the next output
segment, (h).

Now back to the program. The array OLAP[] is used to hold the 399 samples
that overlap from one segment to the next. In lines 470 to 490 the 399 values
in this array (from the previous output segment) are added to the output
segment currently being worked on, held in XX[]. The mythical subroutine in
line 550 then outputs the 625 samples in XX[0] to XX[624] to the file holding
the output signal. The 399 samples of the current output segment that need to
be held over to the next output segment are then stored in OLAP[] in lines 510
to 530.

After all 0 to 15999 segments have been processed, the array, OLAP[], will
contain the 399 samples from segment 15999 that should overlap segment
16000. Since segment 16000 doesn't exist (or can be viewed as containing all
zeros), the 399 samples are written to the output signal in line 600. This
makes the length of the output signal points.16000 ×625% 399 ' 10,000,399
This matches the length of input signal, plus the length of the filter kernel,
minus 1.

Speed Improvements

When is FFT convolution faster than standard convolution? The answer
depends on the length of the filter kernel, as shown in Fig. 18-3. The time

Chapter 18- FFT Convolution 317

100 'FFT CONVOLUTION
110 'This program convolves a 10 million point signal with a 400 point filter kernel. The input
120 'signal is broken into 16000 segments, each with 625 points. 1024 point FFTs are used.
130 '
130 ' 'INITIALIZE THE ARRAYS
140 DIM XX[1023] 'the time domain signal (for the FFT)
150 DIM REX[512] 'real part of the frequency domain (for the FFT)
160 DIM IMX[512] 'imaginary part of the frequency domain (for the FFT)
170 DIM REFR[512] 'real part of the filter's frequency response
180 DIM IMFR[512] 'imaginary part of the filter's frequency response
190 DIM OLAP[398] 'holds the overlapping samples from segment to segment
200 '
210 FOR I% = 0 TO 398 'zero the array holding the overlapping samples
220 OLAP[I%] = 0
230 NEXT I%
240 '
250 ' 'FIND & STORE THE FILTER'S FREQUENCY RESPONSE
260 GOSUB XXXX 'Mythical subroutine to load the filter kernel into XX[]
270 GOSUB XXXX 'Mythical FFT subroutine: XX[] --> REX[] & IMX[]
280 FOR F% = 0 TO 512 'Save the frequency response in REFR[] & IMFR[]
290 REFR[F%] = REX[F%]
300 IMFR[F%] = IMX[F%]
310 NEXT F%
320 '
330 ' 'PROCESS EACH OF THE 16000 SEGMENTS
340 FOR SEGMENT% = 0 TO 15999
350 '
360 GOSUB XXXX 'Mythical subroutine to load the next input segment into XX[]
370 GOSUB XXXX 'Mythical FFT subroutine: XX[] --> REX[] & IMX[]
380 '
390 FOR F% = 0 TO 512 'Multiply the frequency spectrum by the frequency response
400 TEMP = REX[F%]*REFR[F%] - IMX[F%]*IMFR[F%]
410 IMX[F%] = REX[F%]*IMFR[F%] + IMX[F%]*REFR[F%]
420 REX[F%] = TEMP
430 NEXT F%
440 '
450 GOSUB XXXX 'Mythical IFFT subroutine: REX[] & IMX[] --> XX[]
460 '
470 FOR I% = 0 TO 398 'Add the last segment's overlap to this segment
480 XX[I%] = XX[I%] + OLAP[I%]
490 NEXT I%
500 '
510 FOR I% = 625 TO 1023 'Save the samples that will overlap the next segment
520 OLAP[I%-625] = XX[I%]
530 NEXT I%
540 '
550 GOSUB XXXX 'Mythical subroutine to output the 625 samples stored
560 ' 'in XX[0] to XX[624]
570 '
580 NEXT SEGMENT%
590 '
600 GOSUB XXXX 'Mythical subroutine to output all 399 samples in OLAP[]
610 END

 TABLE 18-1

for standard convolution is directly proportional to the number of points in
the filter kernel. In comparison, the time required for FFT convolution
increases very slowly, only as the logarithm of the number of points in the

The Scientist and Engineer's Guide to Digital Signal Processing318

Impulse Response Length
8 16 32 64 128 256 512 1024

0

0.5

1

1.5

Standard

FFT

FIGURE 18-3
Execution times for FFT convolution. FFT
convolution is faster than the standard
method when the filter kernel is longer than
about 60 points. These execution times are
for a 100 MHz Pentium, using single
precision floating point.

E
xe

cu
tio

n
T

im
e

(m
se

c/
po

in
t)

filter kernel. The crossover occurs when the filter kernel has about 40 to 80
samples (depending on the particular hardware used).

The important idea to remember: filter kernels shorter than about 60 points
can be implemented faster with standard convolution, and the execution time
is proportional to the kernel length. Longer filter kernels can be implemented
faster with FFT convolution. With FFT convolution, the filter kernel can be
made as long as you like, with very little penalty in execution time. For
instance, a 16,000 point filter kernel only requires about twice as long to
execute as one with only 64 points.

The speed of the convolution also dictates the precision of the calculation (just
as described for the FFT in Chapter 12). This is because the round-off error in
the output signal depends on the total number of calculations, which is directly
proportional to the computation time. If the output signal is calculated faster,
it will also be calculated more precisely. For instance, imagine convolving a
signal with a 1000 point filter kernel, with single precision floating point.
Using standard convolution, the typical round-off noise can be expected to be
about 1 part in 20,000 (from the guidelines in Chapter 4). In comparison, FFT
convolution can be expected to be an order of magnitude faster, and an order
of magnitude more precise (i.e., 1 part in 200,000).

Keep FFT convolution tucked away for when you have a large amount of data
to process and need an extremely long filter kernel. Think in terms of a million
sample signal and a thousand point filter kernel. Anything less won't justify
the extra programming effort. Don't want to write your own FFT convolution
routine? Look in software libraries and packages for prewritten code. Start
with this book's web site (see the copyright page).

