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Summary

Harmonic sinusoidal coders represent the speech signal as a sum of sinusoidal oscillators, each

oscillator having an independent magnitude and phase.  The frequencies of each oscillator are

an integer multiple (harmonic) of the fundamental frequency.  When the model parameters

(amplitudes, phases, and fundamental frequency) are updated every10-30 ms, high quality

speech can be produced.

This thesis presents several speech coding techniques for harmonic sinusoidal coders.

Introductory chapters describe time and frequency domain speech coding, with special

discussion and comparsion of CELP and sinusoidal algorithms.  Several major contributions

then follow.  Demonstrations of the algorithms developed for this thesis are available in the

form of speech files available via the internet.

A (fundamental frequency) pitch estimation algorithm based on a square law non-linearity is

presented, known as Non-Linear Pitch (NLP). The algorithm has moderate computational

complexity, low algorithmic delay (small buffering requirements), and robustness to gross pitch

errors (halving and doubling). The algorithm employs a minimum number of experimentally

derived constants.

A generic harmonic sinusoidal coder is presented.  This coder has been implemented using a

range of techniques from existing sinusoidal and Multi-Band Excitation (MBE) coders.  In

addition, new techniques are presented for the analysis, spectral magnitude modeling and

synthesis stages.  The unquantised coder produces output speech of very high quality, in some

cases almost indistinguishable from the original speech signal.

Three parametric models for the compact representation of the harmonic phases are described.

A phase model for voiced speech that consists of a minimum phase LPC synthesis filter

cascaded with an all pass filter is proposed, and three candidate systems are then developed

that implement this model.  These models are evaluated using objective and informal subjective

methods, and found to produce speech quality comparable to VSELP in clean speech

conditions.
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Finally, the thesis contributions are combined to produce a fully quantised coder.  The

quantised coder is based on the generic sinusoidal coder developed in this thesis, with the

magnitudes modeled using LSP quantised LPC parameters.  The sinusoidal phases are

represented using the analysis by synthesis phase model developed in this thesis.  The fully

quantised coder produces communications quality speech at 8.3 kbit/s.  The performance of

the coder is analysed and discussed using objective and subjective techniques.  Finally,

suggestions for further work are provided.
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1. Introduction

Speech coding deals with the problem of reducing the bit rate required for a speech

representation while preserving the quality of speech reconstructed from that representation

[1].  One motivation for speech coding is to allow speech communication over power or

bandwidth limited channels.  Such channels exist in communications systems employing digital

radio, for example mobile services where power (due to portability constraints) and in

particular spectrum is limited.

Recent interest in speech coding is motivated by the introduction of fully digital

telecommunications services designed to carry speech signals.  These include satellite systems

using mobile terminals such as Inmarsat-M [12], and second generation terrestrial mobile

systems such as GSM [13][14].  Apart from these systems, proposed uses for speech coding

are future micro cellular mobile systems based on Code Division Multiple Access (CDMA)

[15], and multimedia applications where efficient storage of speech information is required.

An important parameter of a speech coding system is the quality of the reconstructed speech.

This can be used to describe the system, and the types of applications it might be suitable for.

Table 1.1 is a summary of current systems used to code speech.  Note that these systems are

designed to code speech signals only; other coding systems exist that can code any audio signal

[9], however these are beyond the scope of this thesis and will not be considered further.

This thesis deals with communications quality speech coding.  Communications quality speech

is defined as highly intelligible but with noticeable distortion [1].  However the quality of the

reconstructed speech is such that different speakers using the system can be identified, unlike

synthetic quality systems where all speakers sound similar due to the large amounts of

distortion present.  An example of communications quality speech is the existing analogue

cellular system, and many non-digital Public Switched Telephone Networks (PSTN).

1.1 Speech Coding Overview

In practice, speech coding is performed by first sampling analogue speech signals at a sampling

rate and resolution sufficient to preserve the desired quality.  Commonly, 8 kHz sampling rate

and 12-16 bit linear PCM is used to sample communications quality speech.  Before sampling,

the speech is usually passed through an analogue anti-aliasing filter with a pass band of 300-
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3300 Hz.  The speech is then processed using Digital Signal Processing (DSP) techniques to

extract a compact representation in the form of a small number of bits that are then sent over

the communications channel.  The channel may be imperfect and can introduce errors in some

cases.  At the decoder the received bits are used to reconstruct the speech signal, which is then

converted back to an analogue signal using a digital to analogue converter and reconstruction

filter.  Figure 1.1 illustrates the process.

Quality Audio

Bandwidth (Hz)

Distortion Bit Rate

(kbit/s)

Typical

Application

Commentary 50 - 7000 Imperceptible

to Slight

16 - 128 Video

Telephone

Toll 300 - 3300 Imperceptible

to Slight

8 - 64 Network

Telephony

Communications 300 - 3300 Perceptible 2.4 - 16 Mobile

Comms.

Synthetic 300 - 3300 Mechanical

Sounding

0.8 - 2400 Secure Defence

Comms.

Table 1.1: Summary of Speech Coding Systems

Several different techniques are currently used for speech coding [1][61].  Parametric or model

based coders assume a speech production model and extract parameters from the speech signal

that describe that model, updating the model parameters periodically as the characteristics of

the speech signal change.  Waveform coders assume no model, but attempt to minimise the

error between the original and reconstructed speech waveforms.  Many low bit rate

communications quality speech coders use a combination of parametric and waveform

matching techniques, and are thus known as hybrid coders.

The signal processing techniques used for speech coding may be based on time or frequency

domain processing.  The speech signal is often buffered into frames of short blocks of samples,
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typically 20 ms long.  This allows the coding techniques to exploit redundancies across the

frame to improve coding efficiency, at the expense of introduced delay.

D/ASpeech
Decoder

A/D Speech
Encoder

Figure 1.1: Speech Coding Model

1.2 Current Speech Coding Issues

From the author’s experience in the speech coding field, the following major issues in speech

coding have been identified.  Many authors have considered a subset of the issues below, and it

is conceded that the issues are well known in practice, however no equivalent statement has

been encountered by the author.

1.2.1 Speech Quality

An important speech coding consideration is speech quality versus bit rate.  A superior speech

coding algorithm will produce better quality speech at a given bit rate than an inferior

algorithm.  How to determine the speech quality of a given algorithm is still a matter of some

debate [53][61].  The aim of most speech coding research is to lower the bit rate required for a

given level of speech quality.
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1.2.2 Computational Complexity

Lowering the bit rate while maintaining quality is often achieved at the expense of increased

complexity.  A complex algorithm requires powerful DSP hardware that is expensive and

power hungry.  Until the late 1980's, many speech coding algorithms were not implementable

in real time due to the lack of sufficiently powerful real time DSP hardware.  Powerful DSP

chips now exist, however many existing algorithms push their capabilities to the limit [64].

Future algorithms are expected to demand more powerful DSP devices.

DSP hardware consumes significant amounts of power due to the high clock rates required

(typically 50 MHz).  This is a concern for services requiring speech coding for hand held or

portable terminals.  The reduction in complexity of speech coding algorithms would enable

lower power consumption through the use of less powerful DSP hardware.  Less powerful

DSP hardware would also reduce cost.

Thus the search for computationally efficient algorithms is an important research activity; to

reduce DSP hardware requirements, power consumption, and cost of speech coding hardware.

1.2.3 Robustness to Channel Errors

Speech coding is often used in channels that are power limited and thus subject to bit errors

with random or bursty distributions [62].  In these cases, it is necessary that the speech coding

algorithm be robust to the error conditions likely to be encountered in the prescribed operating

conditions.  This may be achieved in several ways.  The first is by adding Forward Error

Correction (FEC) to the encoded speech to protect against bit errors introduced during

transmission.  This can be used to improve the robustness of any speech coding algorithm but

carries the penalty of extra bandwidth due to the added FEC information that must be

transmitted.

The second method to provide robust coded speech transmission is to use algorithms with

inherent robustness.  Certain speech coding algorithms are more robust to bit errors than

others [63], and are thus preferred for use with noisy channels.  Other algorithms may perform

poorly in noisy channels, or break down completely at even moderate bit error rates.  The

audible effects of this may be poor speech quality, annoying, or even physically painful noises
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being emitted from the speech decoder [65].  The investigation and improvement of algorithms

robust to bit errors is therefore an important research issue.

1.2.4 Robustness to Acoustic Background Noise

Background noise presents a problem to many speech coders [66].  One of the reasons that

speech can be coded at low bit rates is through the use of model based or hybrid techniques

that exploit the redundancy of the speech signal.  The assumptions these models make for

speech coders are not necessarily true for other audio signals such as single sinusoids or

background noise.  These coders may reproduce speech sounds faithfully but distort or corrupt

background noise in an annoying fashion.  Another effect is that the signal processing

techniques used to extract model parameters may fail when speech corrupted by high levels of

background noise is coded.  For example, many of the very low rate, synthetic quality

vocoders used by the military fail in moving vehicles or helicopters due to the presence of

periodic background noise.

1.2.5 Coding Delay

Many speech coders buffer speech into frames.  For communications quality speech coders a

frame length of 20-30 ms is common.  This introduces delay into the system, the end to end

delay (total delay of the encoding/decoding process) of the speech coder being a multiple of

the frame length due to processing and transmission delays.  Total coding delays of 80-120 ms

are common.  Delay can also be introduced by specific features of the speech coding algorithm.

Several coding algorithms exist that examine speech information in future frames before coding

information in the current frame, this is implemented in a causal system by introducing delay.

Delay becomes a problem for two reasons.  Firstly, speech coders are often interfaced to the

PSTN via four to two wire converters or "hybrids".  A side effect of using these devices is that

a proportion of the output signal from the codec is fed back into the input of the codec.  Due

to coding delays, this introduces echo.  This is extremely disconcerting to the user, who hears

one or more echoes of his own voice returned at multiples of 80-120 ms.  The second problem

with delay is when the coding delay is coupled with long transmission delays such as those

encountered with transmission via satellites in geosynchronous orbit (200 ms round trip). In
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this case a total delay of over 300 ms may be encountered, making actual conversation

difficult.  Thus minimisation of coding delay is an important research aim.

1.3 Contributions

This section describes the major and minor contributions presented in this thesis.  The major

contributions presented in this thesis are:

1. A pitch estimation algorithm based on a square law non-linearity is presented in chapter 4,

known as Non-Linear Pitch (NLP). The algorithm has moderate computational complexity,

low algorithmic delay (small buffering requirements), and robustness to gross pitch errors

(halving and doubling). The algorithm employs a minimum number of experimentally

derived constants.

2. A generic harmonic sinusoidal coder (chapter 5).  This coder has been implemented using a

range of techniques from existing sinusoidal and Multi-Band Excitation (MBE) coders.  In

addition, new techniques are presented for the analysis, spectral magnitude modelling and

synthesis stages.  The unquantised coder produces output speech of very high quality, in

some cases almost indistinguishable from the original speech signal.

3. In chapter 6, several parametric models for the compact representation of the harmonic

phases are described.  A phase model for voiced speech that consists of a minimum phase

LPC synthesis filter cascaded with an all pass filter is proposed, and three candidate

systems are then developed that implement this model.  These models are evaluated using

objective and informal subjective methods, and found to produce speech quality

comparable to VSELP in clean speech conditions.

Several minor contributions are also presented:

1. A definition of current low rate speech coding issues (section 1.2).

2. A quantitative description of the procedure used to determine the excitation for Code

Excited Linear Prediction (CELP) coders (section 2.5.3).
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3. A derivation of expressions to obtain the harmonic sinusoidal model parameters for both

sinusoidal and Multi-Band Excitation (MBE) coders (section 3.5).

4. A qualitative description of the problems encountered with existing sinusoidal and Multi-

Band Excitation (MBE) analysis procedures due to the breakdown of assumptions of

short-term stationarity (section 3.7).

5. A fully quantised 8.3 kbit/s sinusoidal coder that combines the pitch estimation, sinusoidal

coding, and phase modelling techniques developed in this thesis.

1.4 Thesis Outline

Chapters 2 and 3 provide the conceptual and mathematical background information necessary

to describe the contributions presented in subsequent chapters.  Chapter 2 deals with basic

speech coding principals such as the nature of speech waveforms and then proceeds to

introduce several key speech coding concepts and analysis techniques.  It concludes with a

presentation of several popular time domain coding algorithms.

Chapter 3 presents background information on low bit rate frequency domain coding, which

forms the basis for the major contributions of this thesis.  The sinusoidal coder is introduced,

and analysis techniques for the sinusoidal model parameters are presented in mathematical

form.  Several problems with the sinusoidal coder are discussed.  Finally a qualitative

comparison between CELP and sinusoidal coding is presented.

Chapter 4 presents a new pitch estimation algorithm known as Non Linear Pitch (NLP).  This

algorithm uses the harmonic distortion introduced by a square law non-linearity to determine

the pitch period of speech signals.  The algorithm contains three stages, a basic pitch extractor,

a post processor, and a pitch refinement stage.  The algorithm has been tested using objective

and subjective methods and has been found to produce good results when used with the

generic sinusoidal coder presented in chapter 5.

Chapter 5 presents a generic sinusoidal coder, which is a development of existing sinusoidal

coders.  This unquantised coder is computationally simple, and produces speech of very high

quality, in some cases almost indistinguishable from the original speech signal.  Analysis and
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synthesis techniques for this coder are presented, as well as a method for modelling the

sinusoidal magnitudes using linear predictive techniques.

Parametric methods for modelling the sinusoidal phases of voiced speech are presented in

chapter 6.  Three separate phase modelling techniques are described and contrasted to each

other in terms of subjective and objective results.

The various techniques presented in this thesis are combined in chapter 7 in the form of a fully

quantised communications quality speech coder operating at 8.3 kbit/s.  This harmonic

sinusoidal coder employs one of the phase models presented in chapter 6, and the amplitude

modelling discussed in chapter 5.  Quantisation of these parameters is discussed and objective

and informal subjective results presented.

Chapter 8 summarises the new work presented in this thesis, and provides several areas of

interest for further work.  Appendix B provides instructions on obtaining speech files via the

internet which demonstrate the techniques developed for this thesis.
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2. Speech Coding Techniques

The purpose of this chapter is to introduce and discuss basic speech coding principals and

several complete time domain coding algorithms.  This information, together with the

background information on frequency domain coding presented in the next chapter provides

the conceptual and mathematical framework for the rest of this thesis.

Section 2.1 introduces the source-filter model, a speech production model used as the basis of

many model based and hybrid speech coding algorithms.  Section 2.2 discusses several key

features of speech signals that are often exploited to reduce the bit rate.  In section 2.3 the

linear predictive model of speech production is introduced, and the methods for extracting the

linear predictive model parameters discussed.  Pitch estimation is the topic of section 2.4, the

problems with this challenging area of speech research are discussed and a typical algorithm

presented.  Section 2.5 introduces several complete time domain coding algorithms, including a

derivation of the CELP codebook searching procedure.  Finally, section 2.6 discusses the Line

Spectrum Pair (LSP) representation for quantising and transmission of LPC coefficients.

2.1 Source-Filter Model

Speech is a time varying acoustic pressure wave.  For the purposes of analysis and coding, it

can be converted to electrical form and sampled.  Speech signals are non-stationary; the

characteristics of speech evolve over time.  As the characteristics vary slowly, speech signals

can be approximated as stationary over short periods (in the order of a few tens of

milliseconds) [1].

source filter

Figure 2.1: Source-Filter Model of Speech Production

A convenient model of speech production is the source-filter model (Figure 2.1) [1][2][3].

Speech production is modelled as a filtering operation, where a sound source excites a filter

formed by the vocal tract.  As the speech signal is non-stationary, the characteristics of the

source and filter are time varying.
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A simplified view of speech is that it consists of two types of sounds, voiced (vowels) and

unvoiced (consonants).  Voiced sounds are produced by air from the lungs being interrupted

periodically by the vocal folds at the base of the vocal tract.  Unvoiced sounds are produced by

air from the lungs passing through constrictions in the vocal tract, and are usually of lower

energy.  The filtering operation performed by the speech organs in the vocal tract enhances

some frequencies and attenuates others, depending on the position of the articulators.  The

articulators (vocal folds (cords), tongue, lips, teeth, velum, jaw) are moved by voluntary

muscle control to form different sounds [1].  Physiologically the source and filter are not

separate.  However for analysis purposes this is a useful assumption.

For the purposes of speech coding, accurate modelling of the vocal tract is important in

retaining the intelligibility of coded speech, while effective modelling of the excitation source

produces natural sounding speech.

2.2 Characteristics of Speech Signals

Figure 2.2 is a time and frequency domain plot of a segment of voiced male speech sampled at

8 kHz.  The segment is N = 256 samples long, and the speech was bandpass filtered between

300 Hz and 3300 Hz before sampling.

Note the periodicity in the time domain.  The waveform in this example has a period of

approximately P = 90 samples where P is known as the pitch period (units samples).  The

pitch period (or simply pitch) corresponds to the time between successive openings of the

vocal folds and is related to the fundamental frequency F0 (units Hz) by:

F
F

P
s0 = (2.1)

where Fs is the sampling frequency in Hz.



Chapter 2 - Speech Coding Techniques

11

-1

0

1

x104

0 50 100 150 200 250

Time (samples)

A
m

pl
itu

de

(a)

20

40

60

80

100

120

500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

(b)

Figure 2.2:  Male Speech Segment: (a) Time Domain, and (b) Frequency Domain

In sampled systems F0 is often expressed in normalised radians as ω0 where:

ω π
0

2=
P

(2.2)

In human speech F0 ranges from about 50-500 Hz, 50-160 Hz for males and 100-500 Hz for

females and children.  As the excitation signal for this example is periodic, the magnitude

spectrum is also periodic and consists of harmonics of the fundamental frequency.  The

amplitude of the harmonic series is modulated by a slowly changing function of frequency.

This is the filtering effect of the vocal tract.  Note several peaks in the spectrum, at around

400, 1200 and 2300 Hz.  These peaks correspond to resonances in the vocal tract known as
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formants.  The number, frequency and bandwidth of the formants are time varying and change

as we articulate sounds.

2.3 Linear Predictive Coding

The source-filter model was introduced in the previous section as a convenient way to model

speech production.  To code speech at low bit rates we require a compact and accurate

representation of the excitation source and vocal tract filter.  A popular method of modelling

the vocal tract filtering is Linear Predictive Coding (LPC) [6].  In its most common form, this

technique uses a small number of parameters in the form of an all pole filter to model the vocal

tract.  Parameters for a segment of speech are derived by analysing the original speech signal

using the procedure described below.

S(z)^X(z) H(z)

Figure 2.3: Source-Filter Model in z-domain

To derive the linear predictive model we consider the source-filter model in the z-domain,

illustrated in Figure 2.3.  An excitation source ( )zX  drives a vocal tract filter H z( ) , to

generate synthetic speech �( )S z  (the z-transform of time domain synthetic speech ( )nŝ ) such

that:

( ) ( )�( )S z X z H z= (2.3)

where H z( )  is defined as an all-pole filter of the form [1][2]:

( ) ( )
H z

G

a z

G

A z
k

k

k

p=
−

=
−

=
∑1

1

(2.4)

where { }ak  for k p= 1 2, , ,�  is a set of p linear prediction coefficients, that characterise the

filter's frequency response and G is a scalar gain factor.  Note that other definitions of ( )zH

exist [3][6], that have a positive sign in the denominator of (2.4):
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( )H z
G

a zk
k

p
k

=
+

=

−∑1
1

(2.5)

This yields an equivilant model except for the sign of { }ak .  The LPC model of the form

presented in (2.4) is used in this thesis.  The number of poles in the all pole filter is equal to the

LPC order p.

Our task is to choose { }ak  and G such that �( )S z  is as close as possible to the original speech

signal ( )zS .  This can be achieved as follows.  In the ideal case, we wish �( )S z  to be identical to

( )zS , thus we substitute ( )zS  for �( )S z  and re-arrange (2.3) to obtain:

( ) ( ) ( )
X z

S z A z

G
= (2.6)

Taking the inverse z-transform:

( ) ( ) ( )x n
G

s n a s n kk
k

p

= − −








=
∑1

1

(2.7)

If H z( ) is a good approximation of ( )zS  then the energy in the signal ( )nx  will be minimised

where the total energy is given by:

( ) ( ) ( )E x n
G

s n a s n k
n

k
k

p

n

= = − −




=−∞

∞

==−∞

∞

∑ ∑∑2
2

1

2
1

(2.8)

Thus { }ak  can be found by equating (2.8) to zero and finding the partial derivatives with

respect to ai  for i=1,2,...,p.  From this procedure we obtain p equations in p unknowns:

( ) ( ) ( ) ( )s n s n i a s n k s n i i p
n

k
k

p

n= −∞

∞

= =−∞

∞

∑ ∑ ∑− − − − = =
1

0 1, ,2, ,� (2.9)

which can be expressed in terms of autocorrelation values ( )kR :

( ) ( )R i a R i k i pk
k

p

− − = =
=

∑
1

0 1, ,2, ,� (2.10)
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where:

( ) ( ) ( )R k s n s n k
n

= −
= −∞

∞

∑ (2.11)

This is known as the autocorrelation method of deriving the linear prediction coefficients.

Several other techniques exist for obtaining { }ak , such as the covariance [1] and Burg [2]

methods.  The autocorrelation method is popular due to an efficient method of solving (2.10)

known as the Levinson-Durbin algorithm [6].

To derive G, we need to define the excitation signal ( )zX  in (2.3).  Taking the inverse z-

transform of (2.3):

( ) ( ) ( )� �s n Gx n a s n kk
k

p

= + −
=

∑
1

(2.12)

where ( )nŝ  and ( )nx  are the inverse z-transforms of �( )S z  and ( )zX .  Now consider the case

[6] where the excitation signal ( )nx  is a unit impulse, and ( )�h n  is the impulse response of

(2.12):

( ) ( ) ( )� �h n G a h n kk
k

p

= + −
=

∑δ 0
1

(2.13)

By multiplying both sides by ( )�h n i−  and summing over all n we obtain two expressions

relating ( )�R i , defined as the autocorrelation of ( )�h n :

( ) ( )� � ,R i a R i k ik
k

p

= − >
=

∑
1

1 (2.14)

( ) ( )� �R G a R i kk
k

p

0 2

1

= + −
=

∑ (2.15)

It is reasonable to choose G to minimise the difference in the energy of ( )ns  and ( )�h n .  Thus

the total energy in ( )ns  and ( )�h n  must be equal:
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( ) ( )�R R0 0= (2.16)

Due to (2.16) and the similarity between (2.14) and (2.10), we can conclude [6] that:

( ) ( )� , , , ,R i R i i p= = 01� (2.17)

Thus (2.15) can be manipulated to obtain G for the unit impulse case:

( ) ( )G R a R i kk
k

p

= − −
=

∑0
1

(2.18)

In practice the original speech signal ( )ns  is windowed so speech segments (typically 16-30ms

long) are used to derive { }ak .  This limits the autocorrelation summation to a window of N

speech samples, where N is the frame length.  Due to the non-stationary nature of speech, the

LPC model must be updated regularly by moving the window forward in time.  Figure 2.4

shows an example of LPC modelling applied to the speech segment presented previously in

Figure 2.2.  The dashed line is the magnitude spectrum of the original speech segment.  The

solid line represents the magnitude spectrum of the p = 10, LPC model ( )ωjeH − .
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Figure 2.4: LPC Modelling of Male Speech

Linear predictive coding effectively models the vocal tract frequency response.  In the example,

the LPC magnitude spectrum follows the slowly varying amplitude component, or spectral

envelope.  Note that the LPC envelope falls just below the peaks of the speech spectra in high
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energy areas (formants), and just above the peaks in low energy areas (anti-formants).  The

LPC model fits the peaks better than the valleys due to the greater contribution of the peaks to

the minimum Mean Square Error (MSE) criterion [1].

As the LPC model order p increases, the LPC model provides a better fit to the speech

spectrum.  As p → ∞  the fit becomes exact [6] and the ragged excitation information is

matched as well as the spectral envelope.  However as the model order increases the number of

parameters requiring transmission and hence the bit rate increases, thus the model order is a

trade off between model accuracy and economy of bit rate.  LPC is normally used only to

represent the vocal tract filtering.  For this purpose enough poles must be present in the model

to represent the number of formants, plus a few poles extra to approximate the effects of zeros

in the vocal tract.  Model orders of 10-16 are common for speech coding.

The all-pole filter ( )zA1  is known as the synthesis filter.  If driven with a suitable excitation

signal ( )nx , it can be used to synthesise artificial or coded speech ( )nŝ .  From (2.7):

( ) ( ) ( )� �s n x n a s n kk
k

p

= + −
=

∑
1

(2.19)

The all-zero filter ( )zA  is defined as the analysis filter.  It can be used to remove the vocal

tract information from a speech signal, leaving the residual ( )nr  defined as:

( ) ( ) ( )r n s n a s n kk
k

p

= − −
=

∑
1

(2.20)

The residual is effectively the "ideal" excitation signal that is driving the LPC model of the

vocal tract filter.  Accurate modelling of this signal results in natural sounding speech.

2.4 Pitch Estimation

Pitch or F0 estimation is one of the most difficult problems in speech analysis .  It is also one

of the most important, as the ear is more sensitive to changes in F0 than any other speech

parameter by an order of magnitude [4].  The basic problem of indentifying the fundamental
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frequency of a harmonic series may appear straight forward, however it is complicated by

several factors [4][35]:

1. The common assumption of speech being stationary for short periods (10-30ms) often

breaks down.  For example in transition regions the speech characteristics (including pitch

period) can change rapidly (e.g. Figure 2.5).

2. Effect of vocal tract filtering.  Some harmonics will be amplified, other attenuated.  In

particular, the first formant (F1) gives rise to a large amount of periodic energy that is not

related to F0.

3. Band limiting and phase distortion.  Communications quality speech is band limited to 300-

3300 Hz, thus the first few harmonics for male speakers (including the fundamental) are

often lost.

4. Wide range (50-500 Hz) of possible F0 frequencies.

5. Simultaneous presence of voiced and unvoiced energy (mixed excitation).

6. Presence of ambient environmental noise, e.g. background noise encountered in a moving

vehicle.

A pitch estimator is often comprised of 3 functional elements, a pre-processor, a basic F0

extracter, and a post-processor (Figure 2.6).

The pre-processor may consist of linear and/or non-linear processing.  The pre-processor

attempts to make the speech signal more suitable for the next stage of processing.  For

example, it may consist of inverse LPC filtering that removes the vocal tract information from

the speech signal, leaving a spectrally "flat" signal.

The basic pitch extracter uses time or frequency domain techniques to provide one or more

estimates of the pitch period, P (units samples), or fundamental frequency, F0 (units Hz).

Many basic extracters use a short term transform applied to a frame of speech samples

containing several pitch periods.  The transformed data is characterised by maxima or minima

that correspond to possible pitch estimates.
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Figure 2.6: Pitch Estimator Block Diagram

The post processor evaluates the possible pitch estimates, and determines the most likely pitch

value.  The post processor may "smooth" the pitch contour by comparing the current pitch

estimate to past and future estimates and acting to remove any discontinuities caused by

temporary failure of the basic extractor.

The windowed autocorrelation function is commonly used as a basic pitch extractor [36]:

( ) ( ) ( ) ( ) ( ) maxmin ,,, PPkknwknsnwnskR
n

�=−−= ∑
∞

−∞=
(2.21)

where P F Fsmin max= 0  and P F Fsmax min= 0 .  A range of pitch values from 20-160 samples

corresponding to an F0 range of 50-400 Hz is common.  The speech samples are multiplied by

an N sample tapered data window, ( )nw  to limit the range of the summation.  Windows of 20-

40ms (N = −160 320 samples at 8 kHz sampling rate) are common.  A Hanning window is a

common choice for ( )nw :



Chapter 2 - Speech Coding Techniques

19
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Figure 2.7: Male speech segment: (a) Time Domain, and (b) Autocorrelation Function

Figure 2.7 is an example of the autocorrelation function of a segment of male speech.  Visual

examination of Figure 2.7 (a) indicates a pitch period of about P = 70 samples.  Note the

corresponding peak in Figure 2.7 (b) at k = 70 samples.
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2.5 Time Domain Coding Algorithms

LPC provides an efficient way of coding the vocal tract filter information.  The next stage in

the coding process is to determine an efficient method of coding the excitation for this filter.

2.5.1 LPC Vocoder

The synthesiser (decoder) for a simple LPC vocoder is illustrated in Figure 2.8.  Speech is

synthesised by exciting an LPC synthesis filter with either a periodic (voiced) or white noise

(unvoiced) source.  The periodic source consists of impulses spaced by the pitch period.  Both

the periodic and noise sources are scaled by an appropriate gain.

The speech encoder determines the LPC filter coefficients, the pitch, and a single

voiced/unvoiced decision for each frame.  These parameters are quantised and sent to the

decoder.  This type of vocoder is capable of sending intelligable speech at bit rates of 2400

bit/s and below.

The main drawback is that the synthesised speech has a mechanical quality, due to the simple

excitation model.  The LPC vocoder assumes speech to be either voiced or unvoiced.  In

practice speech often contains both voiced and unvoiced energy, which cannot be adequately

modelled by this coder.

The LPC vocoder requires accurate estimation of the excitation model parameters, such as

pitch and the voiced/unvoiced decision for each frame.  This is a difficult task, which is futher

complicated when acoustic background noise is present.
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Figure 2.8: LPC Vocoder

2.5.2 Multipulse-Excited LPC

Multipulse coders [26] model the residual, ( )nr , using a series of pulses.  The positions and

amplitudes of the pulses are chosen to minimise the error between the original and synthesised

speech over the current analysis frame (typically 5ms long).  Figure 2.8 illustrates the

multipulse analysis loop.

To determine a pulse location and amplitude the excitation generator produces an excitation

sequence for each possible pulse location in the analysis frame.  These candidate excitations are

passed through the synthesis filter, and the MSE between the synthesised and original speech

measured.  The optimum pulse amplitude is obtained by minimising the MSE at each candidate

pulse position.  The candidate position and amplitude that minimises the MSE is chosen, and

the procedure is repeated for the desired number of pulses.
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Figure 2.9: Multipulse-Excitation Encoder

This technique is a form of analysis by synthesis or closed-loop coding, as the canditate

excitation signals are synthesised as part of the analysis procedure.

The pulse locations and amplitudes for successive pulses are found iteratively to reduce

complexity.  After the optimum position and amplitude of pulse n has been chosen, the

synthesised speech from this pulse is subtracted from the original speech.  The result of the

subtraction is then used as the original speech for determing pulse n+1.

Multipulse-Excitation requires no pitch or voicing detectors, which tends to make it more

robust to different speakers and acoustic background noise conditions than the LPC vocoder.

Multipulse coders can produce communications quality speech at bit rates of around 10 kbit/s.

Typically around 4-8 pulses per 5ms analysis frame are required for communications quality

speech.  At bit rates below 10 kbit/s, not enough bits are available for the number of pulses

required to produce an adequate excitation signal.

A low complexity development of Multipulse-Excitation is Regular Pulse Excitation (RPE)

[10].  This coder only optimises the position of the first pulse in each analysis frame, the rest

are regularly spaced.  The amplitudes of each pulse are individually chosen to minimise the

MSE in a similar fashion to multipulse coders.

2.5.3 Code Excited Linear Prediction

One of the most popular methods for communications quality speech coding is Code Excited

Linear Prediction (CELP) [11].  This coder uses the sum of one or more vector codebooks to

quantise the excitation.  An important feature of this coder is that the vector quantisers or



Chapter 2 - Speech Coding Techniques

23

codebooks are searched using an analysis by synthesis procedure.  CELP is capable of coding

communications quality speech at bit rates of 4-8kbit/s.  To discuss the operation of CELP it is

useful to first describe the CELP decoder (Figure 2.10).

-Lz

Stochastic
Codebook

1/A(z)

Synthesised Speec

i
Pitch Synthesis Filter {a  }k

β

α

Figure 2.10: CELP Decoder

In Figure 2.10 a stochastic codebook excites the cascade of a pitch synthesis and LPC

synthesis filter.  The stochastic codebook consists of Ns vectors, each vector containing NSF

samples.  Each vector is populated with a fixed sequence of randomly distributed numbers,

each vector (codebook entry) has a different sequence.  The stochastic codebook contribution

is defined by the entry (i) and the gain (α).

The pitch synthesis filter models the long term periodicity present in the excitation signal

during voiced speech.  This is acheived by modelling the current excitation sample as a

weighted version of a previous excitation sample.  The pitch synthesis filter contribution is

defined by the pitch delay or lag (L), and the pitch gain, (β).

Both the stochastic codebook and pitch synthesis filter parameters are time varying.  They are

updated every subframe of NSF samples, where NSF is usually a submultiple of the LPC frame

size, N (e.g. N NSF= 4 ).  In between updates the excitation parameters remain fixed.

Thus the LPC synthesis filter models the short term periodicity (vocal tract filtering), the pitch

synthesis filter models the long term periodicity (pitch structure), and the stochastic codebook

models the random component (remaining modelling errors and unvoiced speech).
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The pitch synthesis filter can be viewed as an adaptive codebook consisting of Na  (NSF

sample) vectors.  Thus for each possible value of L, we have a codebook entry of NSF samples.

Note that adjacent entries (entry L and L +1) are identical except for the first and last samples.

This representation of CELP is useful for explaining the methods used to determine the

excitation parameters and is illustrated in Figure 2.11

The adaptive codebook contents are time varying, and are updated every subframe from the

composite (sum of adaptive and stochastic) excitation.  Due to this feature the adaptive

codebook tends to build up a good approximation of the ideal excitation waveform over time,

especially in continuous segments of voiced speech.

S u bfram e D e lay

A d ap t ive
C o d ebo o k

S to chast ic
C o d ebo o k

1 /A (z)

S ynthesised  S p eec

L

i {a   }k

Figure 2.11: CELP Decoder with Adaptive Codebook

The CELP encoder exhaustively searches the adaptive and stochastic codebooks to determine

the optimum excitation vectors and gains.  The synthesis filter response to each possible

excitation vector is determined.  This is then compared to the target (original) speech vector in

a mean-square error (MSE) sense.  The parameters that represent the excitation that minimises

the MSE for the current subframe are transmitted to the decoder.

The two codebooks are usually searched sequentially.  First, the optimum excitation vector (L)

and gain (β) for the adaptive codebook is determined.  The stochastic codebook entry (i) and

gain (α) are then chosen.  A simultaneous estimation of both adaptive and stochastic codebook
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parameters is possible, however the large increase in complexity does not warrant the slight

performance increase obtained.

An analytical formulation of the CELP codebook search procedure developed by the author is

now presented.  The procedure is well known, and described qualitatively in many sources.

However, a literature search by the author has found no equivilent analytical presentation of

the entire search procedure.

The composite excitation signal ( )nx  can be described by:

( ) ( )( ) ( )( )x n x n x n n Na
L

s
i

SF= + = −β α , , , , ,0 1 2 1� (2.23)

where ( ) )(nx L
a  is the nth sample of adaptive codebook entry L, and x ns

i( ) ( )  is the nth sample of

stochastic codebook entry i.  As the adaptive codebook consists of previous excitation

samples, (2.23) can be expressed as:

( ) ( ) ( )( )x n x n L x n n Ns
i

SF= − + = −β α , , , , ,0 1 2 1� (2.24)

The aim of the analysis by synthesis codebook search is to choose the excitation parameters

{ }αβ ,,, iL  such that the Mean-Square Error (MSE), E, between the original speech and

synthesised speech for this subframe is minimised:

( ) ( ) ( )( )E e n s n s n
n

N

n

NSF SF

= = −
=

−

=

−

∑ ∑2

0

1
2

0

1

� (2.25)

The synthesised speech is obtained from the LPC synthesis filter ( )zA1 :

( ) ( ) ( )knsanxns
p

k
k −+= ∑

=

ˆˆ
1

(2.26)

As this is a causal Infinite Impulse Response (IIR) filter, it may be expressed as a convolution

of the current and all prior input samples ( ) nnkkx ,1,,, −−∞= �  with the impulse response

of the synthesis filter ( )kh :
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( ) ( ) ( )knhkxns
n

k

−= ∑
−∞=

ˆ (2.27)

Equation (2.27) can be expressed in terms of the response to the excitation signal before the

current subframe, and from the current subframe:

( ) ( ) ( ) ( ) ( )knhkxknhkxns
n

kk

−+−= ∑∑
=

−

−∞= 0

1

ˆ (2.28)

The first term of (2.28) is known as the zero input response, ( )nsziˆ .  This is the component of

the synthesis filter response from the input samples before the start of the current subframe.

The zero input reponse can be obtained using the synthesis filter defined in (2.26) with

( ) 0=nx :

( ) ( ) SFzi

p

k
kzi Nnknsans ,,1,0,ˆˆ

1

�=−= ∑
=

(2.29)

The samples ( ) ( )nsnszi ˆˆ =  for n p p= − − + −, , ,1 1�  are the last p synthesised speech samples of

the previous subframe.  As (2.26) has an infinite impulse response these samples are non-zero,

therefore the zero input response will be non-zero.

The second term of (2.28) is known as the zero state response, ( )nszsˆ , of the synthesis filter.

This part of the synthesis filter repsonse is due to input samples from the current subframe.  It

can be obtained from (2.26) by setting the state variables ( ) 0ˆ =nszs  for n p p= − − + −, , ,1 1� ,

and evaluating:

( ) ( ) SFzs

p

k
kzs Nnknsans ,,1,0,ˆˆ

1

�=−= ∑
=

(2.30)

The zero state response can also be obtained by directly computing the second term of (2.28).

The first term of (2.28) is the contribution to the current output sample from input samples

before the start of the current subframe.  It is not a function of the excitation parameters for

the current subframe { }αβ ,,, iL .  The second term of (2.28) is a function of { }αβ ,,, iL , this is

known as the target vector.  We wish to choose the excitation parameters such that the
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synthesised speech closely matches the target.  To isolate the target, we subtract the first term

of (2.28) from the original speech for this subframe.

Re-formulating (2.25):

( ) ( )( ) ( )( ) ( ) ( )( )
21

0

21

0

ˆˆˆ ∑∑
−

=

−

=
−=−−=

SFSF N

n
zss

N

n
zszi nsnsnsnsnsE (2.31)

The problem is now choosing { }αβ ,,, iL  to minimise E, the MSE between the target speech

( )nss  (original speech with zero input synthesis filter response removed), and ( )nszsˆ .

Substituting (2.23) into the 2nd term of (2.28) we obtain an expression for the zero state

response of the synthesis filter for this subframe:

( ) ( )( ) ( )( ) )()(ˆ
00

knhkxknhkxns
n

k

i
s

n

k

L
azs −+−= ∑∑

==
αβ (2.32)

( ) ( )( ) ( )( )nsnsns i
s

L
azs ˆˆˆ αβ += (2.33)

where ( )( )ns L
aˆ  is the unit-gain, zero state response from the adaptive codebook excitation and

( )( )ns i
sˆ  is the unit-gain, zero state response from the stochastic codebook excitation.

The excitation parameters for each codebook { }αβ ,,, iL  can be found sequentially, first

choosing { }β,L  to minimise:

( ) ( )( )( )
21

0

)( ˆ∑
−

=
−=

SFN

n

L
as

L
a nsnsE β (2.34)

then choosing { }α,i to minimise:

( ) ( )( )( ) ( )( )( )
21

0

)( ˆˆ∑
−

=
−−=

SFN

n

i
s

L
as

i
s nsnsnsE αβ (2.35)

By finding the derivative of (2.34) with respect to β , and equating to zero, an expression for

the optimum gain β  and the resulting MSE may be obtained:
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Similar results may be obtained for { }α,i  from (2.35):

( ) ( )( )( ) ( )( )

( )( )( )
21

0

1

0

ˆ

ˆˆ

∑

∑
−

=

−

=
−

=
SF

SF

N

n

i
s

N

n

i
s

L
as

ns

nsnsns β
α (2.38)
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The codebooks are searched by determining the response to each excitation vector, then

determining the optimum gain.  The resulting MSE for each codebook entry is determined and

stored.  After all codebook entries have been evaluated, the entry and corresponding gain

resulting in the minimum MSE is chosen.

A block diagram of the CELP encoder codebook searching procedure is presented in Figure

2.12.  Only one codebook is drawn, as the search procedures are similar for both codebooks.

After removing the zero input response from the input speech vector, the codebook is

exhaustively searched to find the optimum excitation vector and gain.  This is determined by

synthesising the response to each vector, then comparing it with the original speech on a MSE

basis.
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Figure 2.12: CELP Encoder

Before the error minimisation block the error signal is passed through an error weighting filter.

This filter ensures that certain parts of the spectrum are given more importance, according to a

perceptual criterion.  The error weighting filter is of the form:

( ) ( )
( )γzA

zA
zW = (2.40)

which tends to attenuate the error signal in the formants and enhance the error signal in the

anti-formant regions.  Figure 2.13 is an example of an error weighting filter response with

γ = 0 9. .  The corresponding synthesis filter frequency response is the dashed line.  The filtered

error signal is used to determine the MSE for the current codebook entry.  Less emphasis is

placed on matching the speech signal in the formant regions than in the anti-formant regions.

This can be interpreted perceptually in terms of the masking effect of the human ear.  A poorer

match of the signal in the formants will result in coding noise in this region.  However, this

coding noise will be masked by the relatively high signal energy in the formant.  In the anti-

formant region, the signal level is low, thus any error signal will be highly audible to the

listener.  Thus we weight the error measure to ensure a better match in the anti-formant

regions.
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Figure 2.13: Error Weighting Filter Response

In practice the effect of the error weighting filter can be combined with the synthesis filter to

simplify implementation.  The codebook searching procedure defined above remains the same,

except that a weighted synthesis filter impulse response is substituted for ( )nh .

2.6 Quantisation of LPC parameters using LSPs

Section 2.3 discussed the modeling of the vocal tract filter using LPC techniques, where a set

of linear prediction coefficients { }ak  for k p= 1 2, , ,�  describes the vocal tract filter.  To be

useful in low bit rate speech coding it is necessary to quantise and transmit the LPC

coefficients using a small number of bits.  Direct quantisation of these LPC coefficients is

inappropriate due to their large dynamic range (8-10 bits/coefficient [6]).  Also, there is no

direct way of ensuring synthesis filter stability, which is perceptually important to the

synthesised speech quality.  Thus for transmission purposes, especially at low bit rates, other

forms such as the Line Spectral Pair (LSP) frequencies [57] are used to represent the LPC

parameters.

The LSP coefficients represent the LPC model in the frequency domain, and lend themselves to

a robust and efficient quantisation of the LPC parameters [58].  The prediction filter is an all-

zero (analysis) filter, where the zeroes correspond to the poles of the all-pole (synthesis) filter.
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The LSP frequencies can be derived by decomposing the pth  order polynomial ( )A z , into

symmetric and anti-symmetric polynomials ( )P z  and ( )Q z :

P z A z A z z A zp p
p

p( ) ( ) ( ) ( )( )= = ++
+ − + −

1
1 1 (2.41)

Q z A z A z z A zp p
p

p( ) ( ) ( ) ( )( )= = −+
− − + −

1
1 1 (2.42)

where:

A z a zp k
k

k

p

( ) = + −

=
∑1

1

(2.43)

An important property of the polynomials is that the roots appear in complex conjugate pairs

on the unit circle [57].  This is shown below where ( )P z  and ( )Q z  are expressed in factored

form [57]:

P z z z zi
i

p

( ) ( ) ( ( ) )
/

= + − +−
−

− −

=
∏1 1 21

2 1
1 2

1

2

cosω (2.44)

Q z z z zi
i

p

( ) ( ) ( ( ) )
/

= − − +− − −

=
∏1 1 21

2
1 2

1

2

cosω (2.45)

where ω 2 1i −  and ω 2i  are the LSP frequencies, found by evaluating the polynomials on the unit

circle.  Figure 2.14 illustrates possible root locations for even order ( )P z  and ( )Q z

polynomials, where the roots at location 0 and π are left out for simplicity.

Other characteristics of the LSP frequencies include being interlaced with each other, where

0 1 2< < < < <ω ω ω π,..., p .  The stability of ( )A z  is preserved after quantisation of ( )P z  and

( )Q z , as long as the zeroes of the LSP polynomials are on the unit circle and are interlaced.

The separation of adjacent LSP frequencies is related to the bandwidth of spectral nulls in

( )A z
 
(or spectral peaks in the synthesis filter ( )1 A z ).  A small separation indicates a narrow

bandwidth.
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Figure 2.14: Possible root locations for an even order of ( )P z  and ( )Q z .

The LPC analysis filter, ( )A z , may be reconstructed using the ( )P z  and ( )Q z  polynomials:

( ) ( ) ( )
A z

P z Q z
=

+
2

(2.46)

Thus to transmit the LPC coefficients using LSPs, we first transform the LPC model ( )A z  to

( )P z  and ( )Q z  polynomial form.  We then solve ( )P z  and ( )Q z  for z ej= ω  to obtain p  LSP

frequencies { }ω i .  The LSP frequencies are then quantised and transmitted over the channel.

At the receiver the quantised LSPs are then used to reconstruct an approximation of ( )A z .

Chapter 7 describes the use of LSPs to quantise the generic sinusoidal coder described in this

thesis.
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3. Frequency Domain Coding Techniques

This chapter introduces the concepts involved in frequency domain speech coding, in contrast

to the previous chapter which introduced general speech coding concepts and discussed several

time domain coding algorithms.  This information is used to generate a framework for the

thesis contributions presented in later chapters.

Section 3.1 introduces the concept of sinusoidal coding.  In section 3.2, sinusoidal coding

techniques are extended to harmonic coding.  Voicing models for sinusoidal coders are

introduced in section 3.3, where mixed excitation is discussed.  Section 3.4 presents a

mathematical treatment for the estimation of harmonic sinusoidal model parameters, while

sections 3.5 and 3.6 discuss existing pitch and voicing estimation algorithms.  Several problems

with sinusoidal coders are presented in section 3.7, while section 3.8 presents a comparison of

time and frequency domain coding algorithms.  Methods of measuring speech quality are

presented in section 3.9, and section 3.10 concludes the chapter.

3.1 Sinusoidal Coding

The previous chapter discussed coding algorithms that used time domain analysis to model

speech in terms of the source-filter model.  The object of these coding algorithms was to

determine a suitable excitation sequence for the LPC synthesis filter.  The concept of analysis

by synthesis was introduced, where the encoder synthesises the candidate excitation sequences

to determine the best excitation sequence in a weighted minimum MSE sense.

It is also possible to represent speech signals using frequency domain models [7][8].  Consider

a segment of voiced speech 10-30ms long, such that the characteristics can be considered

stationary.  In terms of the source/filter model, this segment can be viewed as a time domain

impulse train (excitation) convolved with the impulse response of the vocal tract filter.  In the

frequency domain this corresponds to a frequency domain impulse train (excitation) multiplied

by the frequency response of the vocal tract filter.  The spacing of the frequency domain

impulse train is the fundamental frequency, F0, of the speech.

Sinusoidal coders [18][27] represent speech as the sum of a bank of sinusoidal oscillators:
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( ) ( )s n B nm
m

L

m m= +
=

∑
1

cosω θ (3.1)

where the parameters { }Bm , { }mω , { }mθ  represent the magnitudes, frequencies, and phases of

the sinusoids.  To determine the frequency of each sinusoid, simple peak-picking of the high

resolution Discrete Fourier Transform (DFT) magnitude spectrum is used.  The magnitude and

phase of each sinusoid is then obtained by sampling the high resolution DFT at these

frequencies.

As the speech characteristics are non-stationary, the model parameters must be updated at

regular intervals.  Parameter update intervals (frames lengths) of 10-30ms are common.  A

limit, Lmax , is placed on the number of possible peaks.  In frames with more than Lmax  peaks,

only peaks above a certain magnitude threshold are included in the model.  Note that L  is time

varying, as the number of peaks from frame to frame varies.

To synthesise speech using the sinusoidal model, the decoder generates L  sine waves of the

estimated magnitude, frequency, and phase.  However, care must be taken to ensure continuity

of the sinusoids at frame boundaries.  This is achieved by slight adjustment of the model

parameters to ensure smooth evolution of the synthesised speech signal across frame

boundaries.

The sinusoidal coder can be described as a parametric coder, as it describes the speech signal

using a set of model parameters.  Unlike waveform and hybrid coders such as CELP, no

attempt is made to reproduce the original speech waveform exactly1.  Instead, the validity of

the model assumptions are relied upon to produce good quality synthesised speech.

The sinusoidal model is capable of representing both voiced and unvoiced speech.  Peak

picking the short term DFT magnitude spectrum of unvoiced speech will produce model

parameters that tend to be randomly distributed.  For example, the frequencies of the peaks

will not be related as for voiced speech which can be modelled as a harmonic series.

                                               

1Due to the error weighting filter in the analysis by synthesis loop, CELP actually attempts to match the

weighted speech waveform, not the original speech waveform.
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The authors of [18] report that for frame lengths of less than 10ms, the speech signal

reconstructed by the sinusoidal model is perceptually indistinguishable from the original.

3.2 Harmonic Coding

One of the problems with the sinusoidal coder is the time varying number of parameters, which

after quantisation leads to a non-uniform bit rate.  During voiced speech, the sinusoid

frequencies { }mω  will be multiples of the fundamental.  Thus { }mω  can be efficiently modelled

as multiples of the fundamental frequency for the current frame:

ω ωm m= 0 (3.2)

Only the fundamental ω π0 2 0= F Fs
 is transmitted, { }mω  are then determined as harmonics of

the fundamental.  The number of harmonics, L , can also be determined from ω0:

L =










π
ω 0

(3.3)

Thus (3.1) becomes the harmonic [27][21][28] sinusoidal model:

( ) ( )s n B mnm
m

L

m= +
=

∑
1

0cosω θ (3.4)

This is a reasonable approximation for voiced speech, however for unvoiced speech problems

arise.  In some cases modelling unvoiced speech with a harmonic model produces a periodic

component in the unvoiced synthesised speech.  This is a poor model of unvoiced speech

which is usually aperiodic noise.  Thus care must be taken when using the harmonic model to

represent unvoiced speech.  It is shown in later chapters that by suitable selection of the

harmonic phases, unvoiced speech can be faithfully represented using the harmonic sinusoidal

model.

3.3 Mixed Excitation

The classic source-filter model assumes the excitation signal is either voiced or unvoiced.  This

leads to coding models that synthesise either voiced or unvoiced speech.  This model is
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adequate for representing many speech signals, however in practice there is often a mixture of

periodic and aperiodic energy.  Thus there exists a need for a more general model that is

capable of representing voiced, unvoiced and partially voiced speech.

When producing voiced speech, a partial constriction of the vocal tract can produce turbulence

that introduces unvoiced energy into the speech signal.  The sounds resulting from the partial

constriction are known as voiced fricatives.  For example consider the voiced dental phoneme

δ  (e.g. "th" in "these").  This is produced by creating a constriction near the end of the vocal

tract (tongue touching teeth).

Figure 3.1(a) is the magnitude spectrum of δ  from a female speaker.  Note the uniformly

spaced harmonics below 1000 Hz, indicating periodic or voiced energy.  Above 1000 Hz, the

distribution of the energy appears more random, indicating the presence of unvoiced energy.

The simple voiced/unvoiced excitation models fail to faithfully reproduce partially voiced

sounds.  In addition, non-speech inputs such as background noise are often poorly modelled by

these coders, leading to unpleasant perceptual effects at the coder output.

To alleviate these problems, the mixed excitation voicing model was proposed [31].  Coders

employing mixed excitation relax the voiced/unvoiced classification to provide excitation

signals containing both periodic and aperiodic energy.  Usually, the spectrum is split into

several regions or bands.  A separate voicing decision is then made for each band and

transmitted to the decoder.

A mixed excitation vocoder that has gained recent prominence is the Multi-Band Excitation

(MBE) coder [28], which divides the spectrum up into L  bands of width F0.  Thus for voiced

speech, one harmonic will be present in each band.  A voiced/unvoiced decision is then made

for each band, based on the type of energy (periodic or aperiodic) the band contains.

Figure 3.1(b) illustrates the MBE model voicing decisions for the voiced fricative example of

Figure 3.1(a).  This is an example of applying the MBE model to partially voiced speech.  For

fully voiced speech, each band will contain periodic energy, therefore the entire spectrum

would be declared voiced.  Conversely, unvoiced speech consists of aperiodic energy, thus the
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entire spectrum would be classified as unvoiced.  Therefore the MBE model is capable of

representing voiced, unvoiced, and partially voiced sounds.

20

40

60

80

100

120

500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

(a)

0

0.5

1

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

V
oi

ci
ng

(b)

Figure 3.1: Voiced Fricative δ , (a) Magnitude Spectrum, and (b) MBE Voicing Decisions

Note the clustering of the voiced harmonics at the low frequency end of the spectrum.  This

leads to a more economical voicing representation for reasons described below.

Partially voiced sounds are formed by the turbulence created by partial constrictions in the

vocal tract during voiced speech.  Usually, the constrictions are formed near the end of the

vocal tract.  For example, the voiced dental phoneme discussed above is formed by the tongue
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touching the teeth.  The resulting unvoiced energy is therefore only filtered by a short length of

the vocal tract.  However the voiced component of the excitation is always produced at the

base of the vocal tract.  Sounds that excite a shorter cavity lead to higher frequency energy

than those that excite a longer cavity [1].  A musical analog is a pipe organ; lower frequency

notes are produced by longer pipes than higher frequency notes.

The high frequency unvoiced energy tends to be of lower energy than the low frequency voiced

energy due to the combined effect of lip radiation (+6dB per octave), and the high frequency

roll off of the glottal waveform (-12dB per octave).  The net effect is an attenuation of -6dB

per octave over the entire speech spectrum, thus attenuating the high frequency unvoiced

energy with respect to the low frequency voiced energy.

Thus for partially voiced (mixed excitation) speech signals the unvoiced energy tends to be

confined to the higher frequencies, while voiced energy is present at the lower frequencies.

The above physiological argument leads to the justification of a two-band mixed excitation

model.  A transition frequency, ω t , is defined.  The two-band model uses voiced (periodic)

excitation beneath ω t  and unvoiced (aperiodic) excitation above ω t .  Such a model has been

proposed and implemented by several authors in time [32][33][34] and frequency domain

[21][29] coders.

Using Figure 3.1(a) as an example of partially voiced speech, the transition frequency, ω t ,

would be located at 1000 Hz.  In cases of fully voiced speech, ω t  would be situated at a high

frequency (4000 Hz).  Conversely, for fully unvoiced speech, ω t  would be positioned at 0 Hz.

3.4 Harmonic Magnitude and Phase Estimation

This section presents an approach for estimating the harmonic magnitudes and phases that

derives results previously presented for sinusoidal [18] and MBE [28] coders.  To the authors

best knowledge this derivation has not been presented elsewhere, however a different

derivation for the sinusoidal case was presented in [18].

For the purposes of speech analysis the time domain speech signal ( )ns  is divided into

overlapping analysis windows (frames) of Nw  samples.  The centre of each analysis window is
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separated by N samples.  To analyse the l th frame it is convenient to convert the fixed time

reference to a sliding time reference centred on the current analysis window:

( ) ( ) ( ) wuwl
l
w NNnnwnlNsns ,,, �=+= (3.5)

where ( )nw  is a tapered even window of Nw  (Nw  odd) samples , 



−=

2
w

wl

N
N  is the lower

limit of the window, and 



=

2
w

wu

N
N  is the upper limit of the window.  A suitable window

function is a shifted Hanning window:

( ) ( )
wuwl

w

wl NNn
N

Nn
nw ,,,

1

2
cos5.05.0 �=


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
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−−= π
(3.6)

To analyse ( )nsl
w  in the frequency domain the Ndft  (N Ndft w> , Ndft  even) point Discrete

Fourier Transform (DFT) of ( )nsl
w  can be computed:

( ) ( )
2

,,1,0,
2

dft
knNjN

Nn

l
w

l
w

N
kenskS dft

wu

wl

�==

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
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−

=
∑

π

(3.7)

As ( )nsl
w  is real, ( )kSl

w  for k
Ndft= 0 1
2

, , ,�  is sufficient to represent the signal ( )nsl
w  in the

frequency domain.

From the frequency domain speech signal, ( )kSl
w , we wish to obtain estimates of the harmonic

model parameters for the l th frame; { }l
mA  for m L= 1 2, , ,� , and ω0

l , where { }l
mA  are defined as

the complex sinusoidal amplitudes:

( )A B jm
l

m
l

m
l= exp θ (3.8)

Consider a voiced speech signal centred on the current analysis frame.  This can be represented

using the harmonic sinusoidal model:

( ) ( )s n B m n lNl
m
l l

m
l

m

L

= − +
=

∑ cos( )ω θ0
1

(3.9)
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Consider the DFT of ( ) wuwl
l NNnnlNs ,,, �=+ ; ( )kSl , and the DFT of

( ) wuwl NNnnw ,,, �= ; ( )kW .  If (3.9) is substituted into the ( )ns  term of (3.5), the DFT

computed with (3.7) will consist of the convolution of ( )kSl  with ( )kW :

( ) ( ) ( )S k S k W kw
l l= ∗ (3.10)

where the ∗ operator denotes (circular) convolution.  The sequence ( )kSl  is a weighted

frequency domain impulse train:

( )S k
N

A k m
N

k
Nl dft

m
l

l
dft

m

L
dft= −




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
 =
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2 2
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2
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1

δ
ω

π
, , , ,� (3.11)

The impulses are weighted by Am
l  and spaced by 

ω
π

0

2

l
dftN

 samples.  In (3.11) the DFT index

k m
Nl

dft−
ω

π
0

2
 is rounded to the nearest integer, this convention applies to all DFT indexes in

this thesis.

As ( )nw  is an even real sequence, ( )kW  is even and real.  In most cases (except for very low

ω0
l  speakers), the spacing between the impulses in (3.11) is large compared to the "width" of

( )kW .  Consider the amplitude of ( )kW  at a distance of one harmonic spacing either side of

the centre of the window, i.e. k
Nl

dft=
ω

π
0

2
.  The magnitude of ( )kW  is small compared to the

magnitude at the centre of the window:

( )0
2
0 W
N

W dft
l

<<










π
ω

(3.12)

When ( )kW  is convolved with ( )kSl , the effect of the window is to spread the energy of the

frequency domain impulses in ( )kSl  over a small region centred on each harmonic.  Thus a

small amount of energy from the mth  harmonic will be spread to the adjacent (m−1 and m+1)

harmonics.  However, due to (3.12) the impact of adjacent harmonics is small.
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Thus the weight Am
l  of the mth  harmonic is not significantly affected by adjacent harmonics, as

the magnitude of ( )kW  falls of quickly either side of the centre of each harmonic.  Therefore

( )kSl
w  can be approximated as the sum of  L = π ω 0  orthogonal functions, each function

consisting of the convolution of a shifted frequency domain impulse and ( )kW .

Using the identity ( ) ( ) ( ) ( ) ( )ikYiX
N

kYkXkZ
N

i

−=∗= ∑
=1

1
, we can obtain an expression for

( )kSl
w :
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where:

( )











+−= 5.0

2
5.0 0

π
ω dft

l

m

N
ma (3.14)

and:
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π
ω dft

l
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N
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As adjacent harmonics are assumed to have no effect on the current harmonic, the convolution

can be bounded by am and bm to either side of the centre of the current harmonic.  For

example, with F0 400=  Hz, Fs = 8 000,  Hz, Ndft = 256 , am and bm are tabulated below:

m 1 2 3 4 5 6 7 8 9

am 6 19 32 45 58 70 83 96 109

bm 19 32 45 58 70 83 96 109 122

Table 3.1: Example of { }am  and { }bm  calculation
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Assuming ω0
l  is known, equation (3.13) can be used to determine estimates of the model

amplitudes { }Am
l .  Harmonic sinusoidal coders [21] sample the magnitude and phase of ( )kSl

w

at the centre of the harmonics of ω0.  Substituting k m
Nl

dft=
ω

π
0

2
 into (3.13):
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Another approach is used for MBE coders [28].  Consider the mth  band (harmonic) in (3.13)

bounded by k a bm m= , ,� .  A cost function is defined that measures the error between the

measured signal ( )S kw
l  and the synthesised signal given by:
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W k m
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2 2
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The cost function is defined as:

( ) ( )E S k S kw
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∑ �

2
(3.18)

This cost function may be minimised with respect to Am
l  using calculus.  For the purposes of

calculus Am
l  must be considered to be a function of two independent variables (the real and

imaginary part).  Therefore there are several ways to differentiate E  with respect to Am
l ,

depending on the method used to combine the partial derivatives.  A more meaningful least

squares estimation procedure is described in Appendix A1.2, which leads to the expression:
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Figure 3.2 illustrates the estimation of { }Bm
l  for a Nw = 255 sample frame of voiced speech.

The solid line represents the magnitude spectrum of the speech, the stars represent the

magnitude samples for each band obtained using (3.19).
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Figure 3.2: Sinusoidal Model Magnitude Estimation using the MBE Method

3.5 Pitch Estimation for Harmonic Coders

The expressions for estimating the harmonic magnitudes and phases in the previous section

were derived assuming the fundamental frequency for the current analysis frame ω0
l  is known.

In practice this must be estimated from the input speech signal.

A method for determining an estimate of ω0
l  based on a frequency domain analysis by synthesis

model is presented in [28].  A cost function is defined:
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where ( )mkSl
w ,ˆ  is the frequency domain synthesised speech for the mth  band, and ( )kG  is an

optional frequency-dependant error-weighting function.  The modelled speech, ( )mkSl
w ,ˆ , is

synthesised assuming that every band is voiced (all-voiced synthesised speech).  The

parameters { }l
mÂ  are estimated using (3.19).

To determine the fundamental (3.20) is evaluated for a range of possible �ω0
l  values (e.g. 50-

400 Hz), and the value of �ω0
l  that minimises ( )lE 0ω̂  is chosen as the fundamental frequency

estimate for this frame.  The procedure can be considered to be analysis by synthesis in the

frequency domain.  For each possible fundamental, the model parameters are estimated and

used to synthesise an all-voiced estimate, ( )mkSl
w ,ˆ , of the original frequency domain speech,

( )kSl
w .  This estimate is then compared to the original in a MSE sense to determine the

optimum pitch estimate.

The algorithm is described below:

1. Initialise �ω0
l  to start value.

2. Estimate { }l
mÂ  using (3.19), given the current value of �ω0

l .

3. Determine ( )mkSl
w ,ˆ  using { }l

mÂ  estimated in step (2).

4. Determine ( )lE 0ω̂ , store current �ω0
l  if this is the global minima.

5. Increment �ω0
l .  If new �ω0

l  smaller than stop value, go to step (2).

Figure 3.3 is an example of evaluating (3.20) for a range of possible fundamental values.  In

this case a global minima at the fundamental frequency (F0 = 233 Hz) is evident.

The estimation of the harmonic magnitudes and phases depends on the accurate estimation of

the fundamental, �ω0
l  [28].  For the mth  harmonic, any error in the fundamental estimate

∆ω ω ω0 0 0
l l l= − �  is magnified by a factor of m.  Thus errors in �ω0

l  will influence the estimation

of the high order model parameters more than the low order parameters.  Therefore the
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component of the total error, ( )lE 0ω̂ , contributed by the high order harmonics is more sensitive

to variations in �ω0
l  that the component from the low order harmonics.
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Figure 3.3: Plot of ( )lE 0ω̂  for Frame of Female Speech

Unfortunately, the error from the low order harmonics has a much higher amplitude due to the

predominance of low frequency speech energy.  Thus the low order harmonics contribution to

the total error tends to dominate ( )lE 0ω̂ .  This effect can be removed by appropriate choice of

( )kG .  The frequency weighting function for Figure 3.3 was chosen to emphasise the error in

the high order harmonics:

( )






≥

<
=

4,1

4,0

dft

dft

Nk

Nk
kG (3.23)

In other words, an ideal high pass filter with a cut off at half the Nyquist rate.  This prevents

the contribution from the high energy, low frequency harmonics contributing to the error term.

Instead, the error is determined from the high order harmonics.  This produces an error term,

( )lE 0ω̂ , that is more sensitive to errors in the estimated fundamental.

This pitch estimation technique has the ability to resolve �ω0
l  to any desired resolution.  This is

important as if �ω0
l  is too coarsely estimated, then substantial errors will be introduced,

particularly into the high order model parameters.  The authors of [28] suggest sampling
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( )lE 0ω̂  at a resolution of 1 Hz to avoid errors in the pitch estimate affecting the accuracy of the

other estimated parameters.

Figure 3.4 presents the magnitude spectrum of a segment of voiced male speech, ( )kSl
w

(solid), overlayed with the all-voiced synthetic speech estimate, ( )mkSl
w ,ˆ  (dashed).  In Figure

3.4(a), the fundamental, �ω0
l , was obtained to an accuracy of 1 Hz.  This high resolution

estimate of �ω0
l  was used to obtain ( )mkSl

w ,ˆ .  Note the excellent match between the original

and synthetic speech.  Figure 3.4(b) illustrates the error in the synthetic estimate when a 1 Hz

error in �ω0
l  was introduced.  The match between the original and synthetic signals is especially

poor at high frequencies.

The computational effort of sampling ( )lE 0ω̂  at 1 Hz intervals of �ω0
l  is very high.  To minimise

computational effort a two stage process is used.  Initially, ( )lE 0ω̂  is sampled on a coarse grid

to determine the minima of ( )lE 0ω̂  corresponding to the fundamental, �ω0
l .  Then ( )lE 0ω̂  is

sampled to the desired resolution in a small range centred on the initial coarse estimate.

The pitch estimates obtained using this technique are still subject to gross errors, as the

function ( )lE 0ω̂  typically has several local minima.  Thus a pitch tracker is used to post process

the information obtained from the initial coarse sampling of ( )lE 0ω̂ .  The method used in [28]

looks at several analysis frames in the past and future to determine a suitable coarse pitch

estimate for the current frame.  Note that analysis of future frames requires the introduction of

delay, significantly increasing the overall coding delay.  After pitch tracking, the coarse

estimate is refined to the desired accuracy.
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Figure 3.4: Plot of ( )kSl
w  (solid) and ( )mkSl

w ,ˆ  (dashed) for: (a) No error in �ω0
l , and (b) 1 Hz

error in �ω0
l

3.6 Voicing Estimation for Mixed Excitation Coders

The analysis by synthesis pitch estimation equations in the previous section assumed that

voiced speech was presented as the input signal for the current analysis frame.  As discussed

previously, the input speech signal may co
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+nsist of both voiced and unvoiced energy.  For mixed excitation frames, the periodic energy

will tend to be restricted to the lower frequencies, and aperiodic energy confined to the higher

frequencies.

The authors of [21] have described a two-band voicing model based on a Signal to Noise Ratio

(SNR) which measures the fit of the harmonic model for this frame:

( )

( ) ( )∑

∑

=

=

−
=

wu
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N
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l
w
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0

2

ˆ,ˆ ω
(3.24)

where ( )ll
w ns 0ˆ,ˆ ω  is the all-voiced time domain speech for this frame synthesised using the

estimated model parameters.  Equation (3.24) can also be expressed in the frequency domain:
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dft
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2
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2
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∑
== (3.25)

with ( ) 1=kG  in (3.21).  To derive the harmonic model parameters it was assumed that the

speech for this analysis frame was fully voiced ((3.9) and (3.22)).  Aperiodic (unvoiced)

regions of the spectrum do not contain harmonics of the fundamental, thus in these regions the

model will break down.

For fully voiced speech the all-voiced estimated model parameters will closely match the

original speech, thus the SNR will be large.  A partially voiced frame will result in a poorer

match to the harmonic model, thus the SNR will decrease with decreasing voicing.  A totally

unvoiced frame will result in a still lower SNR.  Assuming that the voiced energy will be

confined to lower frequencies, a rule based approach is used in [21] to relate the SNR to the

two-band voicing model transition frequency, ω t .  The transition frequency is quantised with

3-4 bits.

Multi-Band Excitation (MBE) coders determine a local voicing measure for each band:
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with ( ) 1=kG  in (3.21).  This measure represents the normalised model error over the mth

band between the original speech and the speech synthesised using the harmonic model.  A

band containing voiced energy will have a small error term, ( )l
mE 0ω̂ , thus ( )mvl  will be close

to zero.  Unvoiced energy will have a poor fit to the harmonic model, ( )mvl  will therefore be

close to one.

In [28] the voicing measure in each band, ( )mvl , is quantised to one bit by comparison to a

fixed threshold.  The energy in each band is therefore declared voiced or unvoiced.  More

recently, other MBE coders have been presented that quantise the voicing using one bit for

every three bands [30].  Typically, 12 bits per frame are required to quantise the

voiced/unvoiced decisions.

3.7 Problems with Analysis Techniques

Some problems with the parameter estimation algorithms described above have been

encountered by the author.  A literature survey has indicated that the problems have not been

previously documented.  The problems are due to the assumption that the speech (and hence

sinusoidal model) parameters are stationary over short periods (10-30ms).

Figure 3.2 demonstrates a violation of the short-term stationary assumption.  The high order

harmonics appear to have energy spread over a wider range than the low order harmonics.

This is caused by 0ω  changing as the frame was sampled.  The effect is most noticeable for

high order harmonics, as any change in the fundamental is multiplied by m for the mth

harmonic.

The assumption that 0ω  is stationary over short (less than 30ms) periods therefore appears

invalid.  This can lead to errors in the estimation of the other model parameters, such as the

harmonic magnitudes and phases.  Errors can arise as the  techniques presented in the previous

sections assume a fixed fundamental frequency across the entire analysis frame.
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One effect of the non-stationarity of 0ω  will be a bias in the estimated harmonic magnitudes,

{ }l
mÂ .  The expressions used to determine { }l

mÂ  assume the energy in the band is from a fixed

frequency sinusoid.  The effect of a non-stationary fundamental is to spread the energy over a

wider frequency range.  Therefore only a portion of the harmonic's energy is within the range

expected by the fixed harmonic frequency analysis equations.
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Figure 3.5: Voicing Estimation Problem, (a) Original and Synthetic Spectrum, (b) Voicing

function, ( )mvl
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Thus the estimated harmonic magnitudes tend to be biased below the actual harmonic

magnitudes.  The effect is more pronounced for the high order harmonics, as the change in

harmonic frequency across the frame is greater.

Another effect of the non-stationarity of 0ω  is a bias of the voicing estimators described in the

previous section.  Consider the MBE voicing measure for the mth  band, ( )mvl .  This function

is evaluated by determining the error, ( )l
mE 0ω̂  between the all-voiced harmonic model of the

synthesised speech, ( )mkSl
w ,ˆ , and the original speech, ( )kSl

w .

The model of the synthesised speech assumes the speech is stationary across the analysis frame.

Thus the synthesised harmonics are modelled as stationary sinusoids.  Figure 3.5(a) illustrates

the original magnitude spectrum (solid) with the all-voiced synthetic spectrum (dashed).  The

corresponding voicing measure as a function of frequency is presented in Figure 3.5(b).  A

voicing measure near zero indicates voiced energy in a band, a voicing measure near 1

indicates unvoiced energy in the band.  Due to the poor match between the original and

synthetic spectrums at high frequencies, the voicing function is biased towards unvoiced.  The

speech is, however, clearly voiced.  Thus the non-stationarity of w0  could result in an

erroneous classification of the energy in the high frequency bands to unvoiced.
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Figure 3.6: Time Domain Plot of Transition Region in "Juice"

The sinusoidal/MBE analysis expressions also have difficulty correctly analysing speech during

transition regions, for example onsets of voiced speech.  Consider the example presented in
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Figure 3.6, a time domain plot of a unvoiced to voiced transition at the start of the word

"juice", uttered by a female speaker.  Note the abrupt transition from unvoiced to voiced.

Figure 3.7(a) shows the same segment in the frequency domain, ( )kSl
w  (solid), and the all-

voiced synthetic estimate of this speech, ( )mkSl
w ,ˆ  (dashed).  The MBE analysis expressions

have had some difficulty in attempting to model the speech.  An error in �ω0
l  is evident, as the

positions of the original and synthesised harmonics do not match. Errors are also evident in the

harmonic amplitude modelling.
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Figure 3.7: Estimation of Voicing in Transition Region, (a) Original and All-Voiced Synthetic

Speech Magnitude Spectrum, and (b) Voicing Function
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Figure 3.7(b) illustrates the corresponding voicing function, ( )mvl .  Due to modelling errors,

the voicing function estimates the speech as completely unvoiced.  This is despite the fact that

the amplitude of the voiced section of Figure 3.6 is much larger than the amplitude of the

unvoiced section.  Further examination of Figure 3.7(b) suggests that the frame should be

considered partially voiced due to the harmonic structure of the low frequency region.

Thus it can be argued that the voicing measure defined in [28] and (3.26) fails to adequately

deal with transition regions that clearly contain a mixture of voiced and unvoiced energy.  An

optimal voicing estimation algorithm would declare the low order harmonics voiced, and the

high order harmonics unvoiced.

The failure of the voicing measure to deal with transition regions such as illustrated in Figure

3.6 is significant subjectively.  In this example a speech frame that should be modelled as

partially voiced is modelled as completely unvoiced.  The energy of this frame is higher than

the previous unvoiced frames, due to the onset of the high energy voiced speech.  Thus a short,

high energy burst of noise is heard in the synthesised speech, instead of a smooth transition

from unvoiced to voiced speech.

The reason for the failure of the analysis expressions is due to the rapid transition.  The noise

(unvoiced section) is suddenly switched off, and the periodic (voiced) section suddenly starts.

These rapid transitions can be viewed as rectangular windowing of the noise and voiced speech

sequences in the time domain.  Thus the frequency domain harmonics of the voiced speech are

convolved with the DFT of the rectangular window, resulting in significant smearing of the

harmonic energy in the frequency domain.  The "smeared" harmonics no longer resemble the

voiced synthetic harmonics, thus a poor match and high ( )mvl  term is obtained resulting in an

estimate of the energy in that band as unvoiced.

3.8 Comparison of Coding Schemes

The following observations have been made by the author after conducting a literature survey

of the time and frequency domain communications quality speech coding algorithms presented

in the literature.
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CELP is capable of coding communications quality speech at bit rates down to about 5kbit/s.

Typically, 75% of the bit rate is allocated to the excitation (codebook parameters).  Below

5kbit/s, the quality sharply degrades as not enough bits are available to adequately represent

the excitation.  Most of the computational complexity is in the codebook searching algorithm,

and is proportional to the codebook sizes and update rates of the excitation parameters.

The adaptive codebook contributes significantly to the quality of CELP due it's ability to build

up a good model of the excitation.  However, the inherent memory of the adaptive codebook

also contributes to its poor performance in noisy channels.  Bit errors in the excitation

information cause the adaptive codebook contents of the encoder to differ from those in the

decoder.  Due to the recursive nature of the adaptive codebook these errors may remain for

some time.

As CELP uses a modified waveform matching criteria to code the input speech, it is capable of

coding background noise with reasonable fidelity.  Few annoying artefacts are introduced with

non-speech inputs.  However, waveform matching may be a somewhat wasteful approach to

coding the speech, as the human ear is relatively insensitive to short term phase errors.  Also,

the MSE criteria used in CELP does not reflect the human ear's logarithmic magnitude

response.

Parametric coders (sinusoidal, harmonic, MBE) can provide communications quality speech

below 5kbit/s.  They do not exhibit a knee in performance, but rather degrade gracefully with

falling bit rate.  Unlike CELP, they require model parameters such as pitch and voicing to be

extracted from the speech signal.  Reliable estimation of these parameters is still a significant

problem.  The estimation of these parameters is often performed by analysing several frames,

introducing significant delay.  As these coders attempt to fit a speech production model to the

input signal, they tend to be poor at reproducing non-speech signals such as background noise.

Parametric coders have a longer frame rate than CELP for the excitation information (typically

20ms compared with 5ms for CELP), leading to lower overall bit rates for equivalent speech

quality.  In addition, there is no inherent memory, as with the adaptive codebook in CELP.

For this reason, parametric coders tend to be more robust to channel errors than CELP.

The large, time varying number of parameters in sinusoidal coders can make them difficult to

quantise.  For example, in harmonic coders, the number of phase and amplitude parameters is
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dependant on the current fundamental frequency and therefore time varying.  This is in contrast

to CELP coders which have a fixed number of parameters for each frame.  Fortunately there is

usually a large amount of correlation present between adjacent parameters in a given frame.

For instance adjacent harmonics often have similar magnitudes.  This can be exploited to

convert the magnitude parameters to a fixed number of parameters per frame for quantisation

and transmission.

3.9 Measures of Speech Quality

One difficult aspect of low rate speech coding research is the assessment of speech quality after

coding.  Speech quality assessment is divided into two general areas; objective and subjective

measures.

Subjective measurements are performed by playing coded speech samples to listeners and using

their subjective responses to assess the speech quality.  For formal subjective testing large

numbers of listeners and careful experimental design and statistical analysis are necessary to

remove experimental bias and obtain useful results [53].  Typically, only large organisations are

equipped to perform formal subjective testing.

Informal subjective tests discard some or all of the experimental rigor of the formal tests to

expedite the testing procedure.  For example, simply listening to coded speech compared to the

original may yield significant information about the strengths and weaknesses of the coding

process.  Such tests are highly subjective, and perceived coding characteristics tend to vary

widely with different listeners.  However these tests are useful where significant differences are

easily determined.  Informal subjective tests are very useful during development and tuning of

coder design as they can be executed quickly.

Objective testing uses a computer program to compare coded and original speech waveforms

using a distortion metric [54].  Ideally, this distortion metric will correspond to our subjective

perception of speech and therefore give results similar to formal subjective testing.   An

objective measure capable of reproducing subjective results for any coded speech signal does

not exist yet [56][53], however this field is being actively researched [55].  For this reason,

subjective and objective tests often produce different results.
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Several objective measures do exist that produce useful results for coders of a given family, for

example Segmental Signal to Noise Ratio (SEGSNR) [54] is useful for time domain waveform

coders and some hybrid coders such as CELP that incorporate waveform matching

mechanisms.  Also, measures exist that evaluate elements of speech coding algorithms, such as

Cepstral Distortion (CD) [54], and Spectral Distortion (SD) [54], which are often used for

measuring the distortion introduced by the quantisation of LPC parameters.

Sinusoidal coders have proven difficult to evaluate using objective measures, mainly because

most low rate algorithms discard phase information.  Thus waveform based measures such as

SEGSNR which are very sensitive to phase have not been useful for most previous sinusoidal

coding work.  However, the techniques developed for sinusoidal coders in this thesis do

attempt to preserve the harmonic phases, therefore a useful objective measure based on

SEGSNR in the frequency domain is used to evaluate the phase modeling techniques in

Chapter 6.  A Spectral Distortion (SD) method is also used to evaluate the LSP quantiser

performance in Chapter 7.

3.10 Conclusion

This chapter has presented the background information and analysis that is necessary for the

presentation of the following thesis contribution chapters.  Most importantly, the concept of

harmonic sinusoidal coding was introduced and qualitatively and quantitatively examined.

Chapter 4 presents a pitch estimation algorithm developed by the author for use in harmonic

sinusoidal coding algorithms.  This algorithm combines the properties of a square law non-

linearity with the MBE pitch estimation algorithm presented in section 3.5 to produce a robust

pitch estimator.
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4. Non-Linear Pitch Estimation

This chapter presents a pitch estimator based on the application of a square law non-linearity to

the input speech signal.  The algorithm is denoted Non-Linear Pitch (NLP).  The algorithm has

moderate computational complexity, low algorithmic delay (small buffering requirements), and

robustness to gross pitch errors (halving and doubling). The algorithm employs a minimum

number of experimentally derived constants.

After a survey of existing pitch estimation algorithms, it appears that no other algorithms in the

literature use a non-linearity combined with a secondary pitch estimator for post processing.

Pitch estimation concepts were introduced in section 2.4 of this thesis.

The NLP algorithm was developed using three evaluation techniques denoted as automatic,

contour, and subjective.  These techniques are presented and discussed in section 4.5, and

objective results presented for the automatic method, where the NLP algorithm is shown to

perform well compared to two other algorithms.  All pitch estimators will fail under certain

circumstances.  The failure modes of the NLP algorithm are carefully examined and presented

in section 4.6.

Input
Speech

NLP Pitch
Estimation

MBE Post
Processing

Pitch
Refinement

F0
Estimate

Figure 4.1: Pitch Estimation Block Diagram

The NLP pitch estimation algorithm is a three stage process, illustrated in Figure 4.1.  The first

stage (section 4.1) , basic pitch extraction, determines a set of candidate values from a frame

of input speech using a process based on the properties of a square law non-linearity.  The next

stage (section 4.2), post processing, uses a variation of the MBE pitch estimation technique

[28].  The final stage (section 4.3), pitch refinement, is used to obtain an accurate estimate of

the fundamental frequency for the current frame.  This stage uses a low complexity pitch

refinement algorithm.  One possible disadvantage is that the algorithm does not provide an

estimate of voicing, ie the algorithm will return a pitch estimate even if the speech is unvoiced.
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Pitch estimation is a difficult task for reasons described in section 2.4.  One of the main

problems is that no comprehensive speech production model exists that describes all of the

effects observed in speech signals.  For this reason it is difficult to formulate or evaluate a pitch

detection algorithm based on a quantitative model of speech production.  Therefore the

operation of the NLP algorithm is analysed in a largely qualitative manner.

One problem with many pitch estimators is heavy reliance on experimentally derived constants.

These are often included in the post processing stage to improve the performance of a basic

pitch extractor.  Problems arise as these constants are often tailored to correct specific failures

of the basic pitch extractor encountered during development.  This leads to breakdown of the

pitch estimator with other speech utterances outside the development database.  It is for this

reason that many of the pitch estimation algorithms reported in the literature have performance

that is difficult to reproduce, or even assess objectively.

4.1 Basic Pitch Extractor

Pitch estimators based on non-linearities have been proposed by several authors, a summary of

these algorithms is presented in [4].  The non-linearity is generally applied directly to the

speech signal.  Non-linearities are often used to spectrally "flatten" the speech, ie to partially

remove the effects of the vocal tract filtering.  Another use of non-linearities is to enhance the

fundamental through the superposition of difference tones produced by harmonic distortion.

A new basic extraction algorithm is presented, based on a square law non-linearity.  The non

linearity is used to regenerate the fundamental from band limited speech.  By peak picking the

Discrete Fourier Transform (DFT), a set of candidate pitch estimates can be determined.

These candidates are then passed to the next processing stage for evaluation.

Several other non-linearities were tested experimentally (for example cube law and centre

clipping) however the square law provided the best performance.  For this reason and it’s ease

of implementation on modern DSP chips, the square law non-linearity was chosen.

Given a speech signal represented by the sinusoidal model:
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consider the application of a square-law non-linearity to (4.1):
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The second term inside the square brackets will introduce a large number of components at the

fundamental, when m l− = 1.  A large DC term will also be present, when m l= .  A smaller

number of components will be generated at multiples of the fundamental.  Note that energy at

the fundamental frequency will be generated by the non-linearity even when the fundamental

has been removed from ( )ns , eg. when the speech has been band-pass filtered.

A frequency domain view of the effect of the square law non-linearity can be obtained by

considering the identity:

( ) ( ){ } ( ) ( ) ( )DFT x n y n Z k
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l
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=

−

∑1

0

1

(4.4)

where ( )X k  is the N  point DFT of ( )x n  and ( )Y k  is the N  point DFT of ( )y n .  This

identity states that a multiplication of two time domain signals corresponds to a (circular)

convolution of the Discrete Fourier Transforms of the two signals.  Therefore, the

multiplication of a time domain signal by itself (squaring), leads to the autocorrelation of the

DFT of the signal in the frequency domain:

( ){ } ( ) ( ) ( )DFT x n Z k
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=

−
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The magnitude of this signal ( )Z k  will have peaks at frequencies corresponding to F0  and

multiples of F0 , and can therefore be used as a pitch detector.

DFTPeak-Pick

Input
Speech

5

Pitch
C andidates

Figure 4.2:  Basic Pitch Extraction

Figure 4.2 illustrates the basic pitch extractor. The fundamental frequency is estimated in the

range of 50-400 Hz, typical of other pitch estimators.  The algorithm is designed to take blocks

of M = 320 samples at a sample rate of 8 kHz (40 ms window).  This block length ensures at

least two pitch periods lie within the analysis window at the lowest fundamental frequency.

The analysis window size is a trade off between algorithmic delay and low frequency accuracy.

A shorter analysis window will reduce the delay of the algorithm but have poor accuracy when

used to estimate the pitch of low F0 speech signals.  Other algorithms, such as Inmarsat-M

IMBE [12], use a shorter block length (280 samples for the basic pitch extractor) to offset the

delay caused by forward pitch tracking algorithms.  As the NLP algorithm has no forward

pitch tracking, increasing the block length of the basic pitch extractor to improve F0

performance was deemed a reasonable compromise.

The speech signal is first squared then notch filtered to remove the DC component from the

squared time domain signal.  This prevents the large amplitude DC term from interfering with

the somewhat smaller amplitude term at the fundamental.  This is particularly important for

male speakers, who may have low frequency fundamentals close to DC.  The notch filter is

applied in the time domain and has the experimentally derived transfer function:

( ) 1

1
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1
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−

−
−=
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z
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Before transforming the squared signal to the frequency domain, the signal is low pass filtered

and decimated by a factor of 5.  This operation is performed to limit the bandwidth of the

squared signal to the approximate range of the fundamental frequency.  All energy in the

squared signal above 400 Hz is superfluous and would lower the resolution of the frequency

domain peak picking stage.  The low pass filter used for decimation is an FIR type with 48 taps

and a cut off frequency of 600 Hz.  The decimated signal is then windowed and the Ndft = 512

point DFT power spectrum ( ) ( )U k Z k=
2
 is computed by zero padding the decimated signal

with 448 zeros.

The DFT power spectrum of the squared signal generally contains several local maxima.  In

most cases, the global maxima of ( )U k  will correspond to F0 , however occasionally the

global maxima corresponds to a spurious peak or multiple of F0 .  Thus it is not appropriate to

simply choose the global maxima of ( )U k  as the fundamental estimate for this frame.  Instead,

a set of F0 candidates are extracted by determining the positions of all of the local maxima of

( )U k .  These candidates are then passed to the post processing stage for further analysis.

To limit the number of candidates, only those local maxima above a certain threshold T  are

considered.  The value of the threshold varies dynamically with each frame and is set as a

fraction of the global maximum of the frame:

( )T T U k= 0 max (4.7)

where T0  is an experimentally derived constant set to 0.1, and kmax is the DFT bin containing

the global maxima of ( )U k .  The frequencies of all those local maxima above a certain

threshold are determined and are known collectively as the set of fundamental candidates

{ }k kV1, ,�  where V  is the number of local maxima in ( )U k  larger than T , and kv  is the DFT

bin corresponding to the vth  local maxima.  It may be useful to adopt a fixed maximum V  for

real time implementation of the algorithm.  This will constrain the post processing stage to a

known maximum computational load.
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The frequency resolution of the candidates is determined by the size of the DFT.  A larger DFT

will enable a higher accuracy in locating the peak of the magnitude spectrum.  The resolution

of the NLP algorithm is given by the DFT bin spacing S , which may be computed as:

S
F

N D
s

dft

= (4.8)

where Fs is the sampling rate, Ndft  is the DFT size, and D  is the decimation ratio.  For the

current implementation, S = 3.125 Hz.

4.2 Post Processing

The post processing algorithm evaluates each of the candidates determined by the basic pitch

extractor, and chooses one as the pitch estimate for this frame.  The decision is made by

evaluating a cost function ( )E vω  at each of the candidate fundamental frequencies ω v , where

ω v  is related to the candidate DFT bin kv  by ω πv v dftk DN= 2 .  The fundamental candidate

that minimises ( )E vω  is chosen as the fundamental estimate for this frame.

The cost function ( )E ω  (3.20) is based on the MBE pitch estimation algorithm [28], discussed

in section 3.5 of this thesis.  The MBE pitch estimation algorithm samples ( )E ω  over the

entire pitch range, and chooses the fundamental frequency ω 0  that minimises ( )E ω .  For

MBE coders such as [12], an efficient time domain form of the algorithm is used.  The cost

function of previous and future frames are compared to the current frame using a pitch

tracking algorithm, to determine a coarse pitch estimate.  This is then refined by sampling the

more complex, but more accurate frequency domain form of the algorithm in the region of the

coarse pitch estimate.

In the post processing role for the NLP algorithm, the frequency domain form of the MBE cost

function is sampled in small regions around each of the fundamental candidates, leading to a

moderate computational complexity.  This cost function was described in section 3.5 of this

thesis.
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To reduce computational complexity, the frequency weighting function ( )G k  was set to

exclude all harmonics above 1000 Hz:

( )G k
k N

k N

dft
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<
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1 8

0 8

,

,
(4.9)

The MBE cost function is sampled between plus/minus 10 Hz of each candidate frequency, in

2.5 Hz steps.

4.3 Pitch Refinement

A simple pitch refinement algorithm has been successfully used to refine the accuracy of the

fundamental estimate obtained from the post processing stage.  This refinement technique is

very computationally simple compared to others such as dense sampling of the MBE cost

function [28].  The accuracy has been found to be sufficient for the sinusoidal coder described

later in this thesis.

A cost function is defined:
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ω ω0 0

2

1

=
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which simply samples the power spectrum of the windowed speech signal for this frame.  The

argument of Sw  is rounded to the nearest integer.  This function is obviously biased towards

longer pitch periods (smaller fundamentals) as it converges to the energy in the spectrum.

However, over the small range of frequencies the function is sampled the bias is not significant.

Most importantly, the function does exhibit local maxima in the vicinity of the fundamental of

the frame.

In the pitch refinement role, the function is sampled in two steps.  First, the function is sampled

in the range of plus or minus 5 samples of pitch period in 1 sample steps.  Then the function is

sampled in the range of plus of minus one sample of the pitch period, in 0.25 sample steps.
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4.4 Example of NLP Algorithm Operation

This section provides a graphical illustration of the NLP algorithm using a frame of female

speech as an example.  The input time domain speech is shown in Figure 4.3, and the

corresponding magnitude spectrum in Figure 4.4.  Note that the periodic energy in this signal is

largely confined to the low frequency end of the spectrum.

Figure 4.5 illustrates the squared input speech in the time domain.  Note the strong periodic

component at the pitch period, and the DC offset of the signal.  Figure 4.6 shows the squared

time domain signal after notch filtering to remove the DC component that would otherwise

interfere with the signal components at 0F .

Figure 4.7 shows the squared speech power spectrum.  In this case, there are two candidates,

corresponding to the local maxima near 180 Hz and 360 Hz.  These are evaluated by sampling

the MBE cost function in the vicinity of the local maxima of ( )U k , illustrated in Figure 4.8.

The MBE cost function shows a minima around 180 Hz, which is chosen as the fundamental

estimate for this frame.
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Figure 4.3: Frame of Female Input Speech
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Figure 4.4: Input Speech Magnitude Spectrum
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Figure 4.5: Squared Time Domain Speech
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Figure 4.6: Notch Filtered Squared Time Domain Speech
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Figure 4.7: Squared Speech Power Spectrum ( )U k
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Figure 4.8: Samples of MBE Cost Function at Local Maxima of ( )U k

4.5 NLP Algorithm Evaluation

Testing pitch estimators is an important part of pitch estimator development, often ignored by

many authors in the field.  It is relatively easy to develop a pitch estimator that will work

reliably on a certain utterance, but it is very difficult to develop a pitch estimator that will work

reliably across a range of speakers and conditions.  Therefore extensive testing over as wide a

range of speakers and conditions as possible is desirable to fully test a pitch estimation

algorithm.  This however, presents problems in the complexity and range of tests to be

considered.

This section presents tests results obtained with the NLP algorithm.  The tests are divided into

3 types, automatic, subjective, and listening.  The test methodology for each method is
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presented below, and objective results are presented for the automatic method.  Before

proceeding it is useful to discuss the types of pitch errors and the effects of these errors on

speech coders, in particular sinusoidal speech coders.

Failures in pitch estimators can be grouped into two types [37]:

• Gross errors, where the pitch error is greater that 1 ms.  These errors often occur when the

pitch estimator looses the pitch track completely, for example when the pitch estimator

chooses a pitch estimate corresponding to the first formant, or to a multiple or submultiple

of the actual pitch.

• Fine errors, where the pitch error is less than 1 ms.

Of the two error types, gross errors are by far the most serious for sinusoidal coders, and

represents one of the most challenging parts of sinusoidal coder development.  Gross pitch

errors produce perceptually disturbing distortions in the coded speech that seriously degrade

the coded speech quality.  Once a reliable coarse pitch estimate is obtained (free of gross pitch

errors), reliable algorithms (for example [28]) exist for increasing the accuracy of the estimate

and therefore reducing the fine error.  For this reason the tests applied are confined to the

evaluation of gross error performance only.

Due to the lack of comprehensive speech production models, synthetic speech signals with

artificially generated pitch contours are not suitable for pitch estimator evaluation, except

perhaps for evaluating pitch estimator fine error performance.  Thus databases of real speech

signals must be used to evaluate pitch estimator performance.  Several criteria can be used to

evaluate pitch estimator performance (objective or subjective), these are considered in the tests

described below.

4.5.1 Automated Pitch Estimator Evaluation (automatic)

This type of testing compares a candidate pitch estimator to a hand estimated reference pitch

database.  The criteria of gross errors can be applied and the number of errors counted for each

candidate algorithm.  The candidate pitch estimator with the highest “score” (smallest number

of gross errors) when compared with the reference database is judged to be superior.
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In this case, manually estimated pitch values for a 2400 frame database of 4 speakers were

derived using a semi-automatic pitch detector system similar to [38].  This system presents the

operator with several “views” of the current frame of speech.  The views are the time domain

speech, the DFT magnitude spectrum, and the autocorrelation function.  Based on the

operator’s judgement, a decision is made on voicing.  If the frame is voiced the operator then

chooses the peak of the autocorrelation function that correctly represents the periodicity of the

frame.
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Figure 4.9: Original Speech Window
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Figure 4.10: Magnitude Spectrum Window with Harmonic Marker Lines (dotted)
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Figure 4.11: Autocorrelation Window with Pitch Marker Line (dotted)

Figures 4.9 to 4.11 provide an example of the semi-automatic pitch detector operation.  Figure

4.9 is the first window presented to the operator, this window displays the time domain speech.

From this window the operator can judge if speech is present, and if it is voiced or unvoiced.

The next window (Figure 4.10) presents the magnitude spectrum (solid line) of the speech.

Superimposed on this window are dashed harmonic marker lines.  These lines are drawn at

multiples of the current F0 estimate.  If the current F0 estimate is correct, these markers will

be aligned with the magnitude spectrum harmonic peaks.  This system aids the operator in

choosing the correct F0 estimate for this frame.  The final view of the signal is in the

autocorrelation domain, Figure 4.11.  For each frame, the software automatically chooses the

peak of the autocorrelation function as an initial estimate, placing the dotted marker line on the

chosen peak.  This initial estimate may be changed by the operator until the correct peak (in

the operators opinion) is chosen.

The reference pitch database was compared to the NLP algorithm and two control pitch

estimation algorithms.  The first algorithm is the pitch estimator from the Inmarsat-M IMBE

vocoder [12], which is unique in the literature as being a comprehensively defined specification

used in a practical speech coder.  Most other algorithms in the literature are only partly

defined, for example experimentally derived constants are not presented.  This makes exact

implementation of these algorithms very difficult.  For this reason the Inmarsat-M IMBE

algorithm makes an ideal control for testing the NLP algorithm.

The second control algorithm is an autocorrelation type pitch estimator commonly used in the

literature [39].  The combined results for all 4 speakers (2400 frames total) are presented in
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Table 4.1.  In addition Figure 4.12 compares the pitch contour of the NLP algorithm and the

reference database for a section of male speech.

Algorithm Hits Misses % Correct

Autocorrelation 488 115 80.9

Inmarsat-M 531 72 88.1

NLP 553 50 91.7

Table 4.1: Results for Automatic Pitch Estimator Evaluation

A “hit” is recorded when the pitch estimator under test matches the reference database, a

“miss” occurs when a gross error (pitch deviation greater that 1 ms) occurs.  No comparison is

performed on unvoiced frames.  These were marked during the generation of the reference

database, and are ignored during pitch estimator evaluation.  Over this test database, the NLP

algorithm has the lowest incidence of gross errors.
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Figure 4.12: Pitch Contour for NLP (solid) and Reference Database (dashed)

There are several problems with this method of pitch estimator evaluation:

1. Typically each 10 ms frame requires about 30 seconds of analysis for an experienced

operator.  Thus each second of speech requires about 50 minutes of analysis time.  For the

large speech databases needed for reliable pitch estimator evaluation, the amount of

analysis time quickly becomes unreasonable.
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2. No two operators will give the same results.  They must make subjective judgements such

as if any periodic energy is present in the frame, if so which of the possible candidates

presented by the automatic parts of the system represents the likely pitch.  This problem

can be alleviated by operator training and averaging the hand estimates over several

operators, however this multiplies the analysis time by the number of operators.

3. A pitch estimator with a higher “score” when compared to the reference database is

supposedly superior to another algorithm, however this may not be the case.  Gross pitch

errors have different subjective impact depending on where they occur.  For example, a

gross error in a high energy voiced section will be subjectively very disturbing whereas a

gross error in a low energy partially voiced region may be inaudible.  Thus simply

comparing candidate pitch estimators against a reference on the basis of a match score is

not sufficient to determine the ranking of the candidate algorithms performance.  For

example, during the development of the NLP algorithm it was found that some variants of

the NLP algorithm with lower match scores actually sounded superior to those with a

higher match score.

4.5.2 Semi-Automatic Pitch Contour Evaluation (contour)

This pitch estimator evaluation scheme uses an interactive computer program to

simultaneously view several frames of the input speech, and the resulting pitch contour

generated from those frames.  The operator visually compares the two windows, noting the

shape of the pitch contour and the speech.  Gross errors are easily identified as discontinuities

in the pitch contour during voiced speech.

This method allows evaluation of speech at a faster rate than the automatic method discussed

above, as several frames are examined at once.  Also, the importance of any pitch errors can be

evaluated by the operator by examining the input speech where the error occurred.  However,

this method is still somewhat slow, and the entire test database must be manually re-examined

every time a modification is made to the pitch estimator.
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Figure 4.13: Input Speech Window for Contour Pitch Estimator Evaluation Method
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Figure 4.14: Pitch Contour Window for Contour Pitch Estimator Evaluation Method

The test database detailed in Appendix C was processed using the NLP algorithm and the

resulting pitch contours examined with the contour method.  During development of the NLP

algorithm, this provided a way of rapidly determining the position and importance of gross

errors.  For example errors in low energy, partially voiced regions were found to have little

impact on the subjective speech quality and could safely be ignored.  Gross errors in high

energy, strongly voiced regions, however were very important and therefore caused analysis of

and modification of the algorithm to prevent their occurrence.  Thus the contour method

proved to be more effective in testing the algorithm performance than the automatic method,

due to it’s ability to distinguish the subjectively important gross errors.

Using the final version of the NLP algorithm presented in this chapter, no gross errors in

strongly voiced regions were encountered over the test database in Appendix C.
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4.5.3 Subjective Testing Using Sinusoidal Coder (subjective)

The final testing method is based on listening tests where the pitch estimator is used to encode

and decode speech using the sinusoidal coder algorithm [21].  This method is relatively fast, as

listener evaluation occurs at the rate the processed speech is played back.  Perceptually

important gross pitch errors show up as impulsive sounds such as “cracks” of “beeps” in the

processed speech.  These errors can then be traced to specific coder frames using the contour

method described above.

The test database in Appendix C was processed using the NLP algorithm and the generic

sinusoidal coder described in Chapter 5.  No gross perceptual errors were evident over the

entire database.

4.6 Failure Modes for Non-Linear Pitch Estimation

During development the NLP algorithm was tested widely on a variety of speech sources using

the subjective testing method described above.  Under certain conditions, the algorithm would

break down, producing subjectively annoying sounds in the synthesised speech.  Using the

contour testing scheme the problem frames were isolated for further analysis.  This section

examines the reasons for these failures of the NLP algorithm, and proposes a pitch tracking

method to alleviate the problems encountered.
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Figure 4.15: Frame of Input Speech

Figure 4.15 is an example of an input frame of speech that produces a failure in the NLP

algorithm, Figure 4.16 is the corresponding squared speech power spectrum ( )U k .  The
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failure occurs because the local maxima in ( )U k  at the fundamental (around 170 Hz) is

suppressed compared to the strong global maxima at the 2nd harmonic (around 340 Hz).  The

local maxima at the fundamental fails to exceed the threshold given by (4.7) and is therefore

not considered a candidate for the post processing stage.
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Figure 4.16: Squared Speech Power Spectrum ( )U k

The fundamental is sometimes suppressed in this manner due to phase effects.  Unlike many

other pitch estimation algorithms (such as those based on autocorrelation functions) the phase

of the speech spectrum affects the NLP algorithm.  Phase effects can cause the product terms

of the summation of (4.5) to add vectorially in a manner that partially cancels the maxima, or at

least attenuates it compared to other local maxima of ( ) ( )U k Z k=
2
.

Consider a speech signal periodic in ω 0 .  A local maxima should occur at ( )Z k0 , where

k DNdft0 0 2= ω π .  However, this local maxima may be attenuated if the complex terms of the

summation of (4.5) add in anti phase.  For example, consider the following expanded version

of (4.5) with ( ) ( )X X k0 10 = , ( ) ( ) 3

2

0 11
π

j

ekXX =− , and ( ) ( ) 3

2

0 22
π

j

ekXX
−

=− :

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ]Z k
N

X X k X X k X X k0 0 0 0

1
0 1 1 2 2= + − + − +� (4.11)
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In this case the first three terms would sum to zero.  If this cancellation were to continue

through all the terms of the summation, then ( )U k  may be very small instead of the desired

global maxima.

One approach often used to improve the pitch estimation process is pitch tracking.  For

example the MBE pitch estimation algorithm [28] evaluates the basic pitch extractor results for

several frames in the past and future using a dynamic programming approach.  This approach is

useful for removing the effects of problems in the basic pitch extractor that are isolated to

single frames.  However the attenuation of the fundamental due to phase effects is usually not

isolated to single frames, and may extend across many frames.  Thus pitch tracking approaches

that consider the basic extractor output from several adjacent frames may not be suitable for

correcting the problem described above.

As a first order solution a form of backwards pitch tracking has been added to the algorithm

with encouraging results.  This algorithm adds to the list of candidates { }k kV1, ,�  the DFT bin

corresponding to the fundamental estimate for the previous frame.  Thus the previous frame’s

F0 is always tested by the post processing algorithm, even if no local maxima of sufficient

magnitude is present in the current frame.  This technique encourages continuity in the pitch

track, but can make the pitch estimator slow to respond to transients, for example the start of

new pitch tracks.

Algorithm Hits Misses % Correct

NLP 553 50 91.7

NLP with tracker 531 72 88.1

Table 4.2: Evaluation of Backwards Pitch Tracker using Automatic Evaluation Method

The NLP algorithm with backwards pitch tracker was tested using the automatic method

described earlier in this chapter.  The results presented in Table 4.2 indicate that the pitch

tracker actually slightly increases the number of gross errors.  However subjective listening

tests conducted on utterances prone to the phase problems indicate that the backwards pitch
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tracking does reduce the number of perceptually important errors, improving the overall

subjective quality.
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5. Generic Sinusoidal Coder

This chapter describes the generic sinusoidal coder developed for this thesis which has evolved

from studies of existing sinusoidal and MBE coders.  Features unique to this coder include

techniques used in the analysis, spectral amplitude modelling, and synthesis stages.

The unquantised coder produces output speech of very high quality, in some cases almost

indistinguishable from the original speech signal.  This quality is achieved using a simple and

computationally efficient algorithm, where both voiced and unvoiced speech is represented

using the harmonic sinusoidal model.

Section 5.1 presents the sinusoidal analysis algorithm which extracts the sinusoidal model

parameters from the input speech.  Section 5.2 discusses computationally efficient synthesis

algorithms based on overlap/add DFT structures. Section 5.3 presents the spectral magnitude

modelling algorithm which uses a fixed number of Linear Prediction Coefficients (LPCs) to

model the sinusoidal magnitudes.  Speech files are available via the internet which demonstrate

the algorithms developed in this chapter (Appendix B).

5.1 Analysis

Figure 5.1 illustrates the sinusoidal encoder algorithm.  Input speech is windowed using a 220

sample tapered window, ( )nw  , before being transformed to the frequency domain using a 256

point DFT (computed efficiently using the FFT algorithm).  The windowing and DFT of the

input signal are performed using the procedure described in equations (3.5) to (3.7) in section

3.4 of this thesis.

Phases and amplitudes are estimated for each harmonic using the F0 estimate obtained from

the Non Linear Pitch (NLP) algorithm described in Chapter 4.  The frame rate is 10 ms, which

was chosen to ensure the coder captures rapid changes in the time domain waveform.  These

are typically poorly reproduced in frequency domain coders due to the 20-30 ms frame rates

usually employed.
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Figure 5.1: Block Diagram of Sinusoidal Encoder

Note that voicing is not explicitly represented, instead it is carried by the phase information.

This removes the need for a voicing estimator.  As with other parameter estimators (such as

pitch), voicing estimators are never perfect, and are often a source of artefacts in speech

coding algorithms, in particular in high acoustic background noise environments.

As discussed in section 3.3 of this thesis, most other sinusoidal and MBE vocoders employ a

voicing estimator and explicitly transmit a voicing measure to the decoder.  For example, the

MBE vocoder divides the spectrum up into bands, and uses a single bit to represent the voiced

or unvoiced nature of each band.  Sinusoidal vocoders generally employ a two band model,

where the lower frequencies are voiced and the upper frequencies are unvoiced.  A transition

frequency determines the changeover between unvoiced and voiced sections of the spectrum,

and is usually defined with 3-4 bits.

The potential disadvantage of using the harmonic phases to convey voicing is an increase in bit

rate.  This problem is addressed in chapter 6 where several schemes designed to model the

harmonic phases are presented and investigated.  The phase modeling techniques presented in

Chapter 6 apply a voicing measure to the coder but this is not fundamental to the operation of

the unquantised coder, unlike other algorithms such as MBE [28].  For example, other phase

modeling/quantisation algorithms could be employed (eg vector quantisation [60]) that do not

require voicing measures or decisions.

To the best knowledge of the author, the concept of using the phase to convey voicing

information in a harmonic sinusoidal coder is unique.  Other authors [18] have used the

generalised sinusoidal model (eg equation (3.1)) to convey voicing using the combination of
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sinusoidal frequencies and phases, however most sinusoidal and MBE vocoders employ

voicing estimators as a fundamental part of operation, even in the unquantised state.

Thus the model employed is the harmonic sinusoidal model:

( ) ( )s n B mnm
m

L

m= +
=

∑
1

0cosω θ (5.1)

where the parameters { }Bm  and { }mθ  represent the magnitudes and phases of the sinusoids,

ω 0  is the normalised fundamental frequency in radians, and L  is the number of harmonics

given by  L = π ω 0 .

In section 3.4 two methods for estimating the harmonic magnitudes and phases from the DFT

of a frame of speech samples were presented.  These methods are used in sinusoidal [21] and

MBE [28] coders, two members of the harmonic sinusoidal coder family.  A different method

for estimating and representing harmonic magnitudes is presented here, that appears to be

unique.

In this chapter the notation developed in section 3.4 is used, however the superscript denoting

the frame is excluded for simplicity.  Thus the Ndft  point DFT of the l th frame of input speech

is ( )S kw , and the estimate of the fundamental frequency for the current frame is ω 0 .  The

RMS magnitude, Rm for the mth  harmonic is defined as:
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where am  and bm  (given by (3.14) and (3.15) and repeated here for convenience):
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represent the limits of the current harmonic.  This method estimates the average magnitude of

the current harmonic.  It differs from other magnitude estimators such as those used in

sinusoidal [21] and MBE [28] coders in several respects:

1. It will work equally well for voiced or unvoiced energy as it considers the entire energy in

the current band and does not constrain it to be sinusoidal (which introduces a bias in

favour of voiced bands).

2. It is relatively insensitive to small errors in the fundamental frequency estimate.  The

estimator in (5.2) merely requires that most of the energy in the band be contained in the

interval between am  and bm .

The harmonic phases are estimated by sampling the DFT at the harmonic centres, using a

method identical to that used by sinusoidal coders [21]:

� argθ
ω

πm w
dftS m

N
=



















0

2
(5.5)

5.2 Synthesis

The generic sinusoidal coder algorithm described in this chapter uses sinusoids to synthesise

both voiced and unvoiced speech energy.  Section 5.2.1 describes a procedure for determining

the magnitudes of the sinusoids used to synthesise the speech signal { }Bm  given the RMS

magnitudes { }Rm .  An algorithm for performing the actual synthesis using an overlap add

procedure to interpolate the synthesised signal from adjacent frames is described in Section

5.2.2.

5.2.1 Recovering Sinusoidal Magnitudes

To reconstruct the speech signal we need to estimate the harmonic magnitudes { }Bm  from the

RMS magnitudes, { }Rm .  Note that although the original signal in the region of the harmonic

may have been voiced (ie a sinusoid), or noise, we use a sinusoid to synthesise the signal.

Therefore we need to determine a suitable amplitude for the sinusoid, given the RMS
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magnitude of the energy in the band.  This can be achieved by matching the energy of the

synthesis sinusoid to the energy in the band obtained from Rm.

The energy of the sinusoid used to synthesise this signal can be expressed as:

E A W k m
N

m m
dft

k a

b

m

m

= −








=

−

∑
ω

π
0

2
1

2
(5.6)

where Am  is defined as the complex sinusoidal amplitude for the mth  band:

( )A B jm m m= exp θ (5.7)

and ( )W k  is the DFT of the analysis window, ( )nw .  We assume that most of the energy in

W k m
Ndft−









ω
π

0

2
 lies is the interval bounded by k a bm m= −, ,� 1 and that ( )W k  is real.

Therefore (5.6) can be approximated as:
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Note that Bm  has been replaced by an estimate �Bm  due to the approximation of the limits of

( )W k .  Applying Parseval’s theorem in the DFT domain:
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we obtain:

( )∑
−

=
=

1

0

22ˆ
dftN

n
mm nwBNE (5.11)

The energy in the band can be determined from the input signal as:
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To match the measured energy in the band to the synthesised energy in the band we equate

(5.11) and (5.12) and solve for �Bm :
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Thus given the RMS magnitude for each band, we can determine an estimate of the sinusoidal

magnitude required for synthesis.  As the window ( )w n  is constant, (5.13) reduces to:

�B R Nm m= (5.14)

if we normalise the window such that:

( )w n
Nn

Ndft

2

0

1
1

=

−

∑ = (5.15)

The factor of N  in (5.14) is useful for the DFT based synthesis algorithm, described in the

next section.

5.2.2 Overlap Add Synthesis

Synthesis is achieved by constructing an estimate of the original speech spectrum using the

sinusoidal model parameters for the current frame.  This information is then transformed to the

time domain using an Inverse DFT (IDFT).  To produce a continuous time domain waveform

the IDFTs from adjacent frames are smoothly interpolated using a weighted overlap add [18]

procedure.

The estimate of the original speech spectrum is constructed using the sinusoidal model

parameters:
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This signal represents the DFT of the synthesised speech signal, and consists of impulses

spaced by ω 0  weighted by the complex harmonic amplitudes �Am where:

( )� � exp �A B jm m m= θ (5.17)

As we wish to synthesise a real time domain signal, ( )�S k  is defined to be conjugate symmetric

in the periodic DFT domain:

( ) ( )� � , , , ,*S N k S k k
N

dft
dft− = = −1 2
2

1� (5.18)

where ( )�*S k  is the complex conjugate of ( )�S k .  This signal is converted to the time domain

using the IDFT:
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We introduce the notation ( )�s nl  to denote the synthesised speech for the l th  frame.  To

reconstruct a continuous synthesised speech waveform, we need to smoothly connect adjacent

synthesised frames of speech.  This is performed by windowing each frame, then shifting and

superimposing adjacent frames using an overlap add algorithm.  A triangular window is

employed for this algorithm and is defined by:

( ) [ ]t n

n N n N

n N N N n N

otherwise
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− − ≤ <



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1 2
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(5.20)
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Figure 5.2: Triangular Synthesis Window

The frame size, N = 80, is the same as the encoder.  Figure 5.2 illustrates the synthesis

window employed for the decoder.  The shape and overlap of the synthesis window is not

important, as long as sections separated by the frame size (frame to frame shift) sum to 1:

( ) ( )t n t n N+ − =1 (5.21)

The continuous synthesised speech signal ( )�s n  for the l th  frame is obtained using:

( ) ( ) ( ) ( )� � ( ) � , , , ,s n lN s n l N s N N n t n n Nl dft+ = + − + − + + = −1 1 0 1 2� (5.22)

( ) ( ) ( )� � , , , ,s n lN s n N t n n N N Nl+ = − − = − −1 1 2 1� (5.23)

Note that the output for the current frame is ( )� , , , ,s n lN n N+ = −0 1 1� , however storage

must be provided for the future output samples n N N N= + −, , ,1 2 1�  so that they can be

added to samples from the next frame.

5.3 Parametric Magnitude Modelling

This section deals with the efficient modelling of the spectral magnitude parameters { }Bm  with

a moderate order Linear Predictive model.  The spectral magnitudes consume the greatest

portion of the bit rate, thus compact modelling of the spectral magnitudes is an important

research issue in sinusoidal coding.
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Direct quantisation of spectral magnitudes is possible [28], but requires a large number of bits.

Also, the number of spectral magnitudes is related to the fundamental frequency and therefore

changes on a frame by frame basis.  Thus direct quantisation would require a time varying bit

allocation scheme.

Adjacent spectral magnitudes are highly correlated and tend to describe the vocal tract filtering

action, thus the Linear Predictive Coding (LPC) model is a good choice for modelling spectral

magnitudes in harmonic or sinusoidal coders [29][25][46][48][47].  After the LPC model is

derived, the parameters may be easily transformed to Line Spectral Pair (LSP) frequencies for

efficient quantisation and transmission.

Obtaining the LPC model for a given frame of speech may be achieved using time or frequency

domain techniques.  Frequency domain approaches [29][25][46] typically use the harmonic

spectral magnitudes (ie some parameter set equivalent to { }Bm ) to directly obtain the

autocorrelation coefficients ( )kR  which are then used to compute the LPC coefficients { }ak

and gain term G .  Time domain approaches such as [48] use ordinary time domain LPC

analysis applied to the input speech signal. In either case, the spectral magnitudes are usually

recovered at the decoder by sampling the LPC spectrum at the harmonic frequencies.

As the frequency domain approaches use the spectral magnitudes directly, some potential

advantage exists compared to the time domain approaches which consider the entire signal

including the unwanted effect of pitch on the magnitude structure of the LPC spectrum.

However, the frequency domain schemes exhibit problems in arriving at an accurate LPC

model when the number of harmonics is not large compared to the number of poles, for

example in female speech [50].  Several techniques have been proposed to combat this

problem, for example by using interpolation to produce a large number of spectral magnitudes

[18] [29], or by modifying the LPC modelling cost function and using iterative techniques to

minimise the resulting non-linear cost function [50][49].

The approach used here is to obtain the LPC model using time domain analysis, and to recover

the spectral magnitudes at the decoder using the RMS average of the LPC spectrum in the

band containing the harmonic instead of sampling the LPC envelope at the centre of the

harmonic.  The time domain analysis produces a set of p  LPC coefficients { }ak  and a LPC
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gain parameter G .  The procedure used for determining these parameters is given in section

2.3 of this thesis, and is performed once per 10 ms frame.

Thus the RMS spectral magnitudes can be recovered by averaging the energy of the LPC

spectrum over the region of each harmonic:
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where ( )H k  is the Ndft  point DFT of the LPC model for this frame (given by H z( )  in section

2.3).

The effect of the LPC model on the coder quality has been determined using objective and

subjective tests.  Objective results are determined by measuring the Signal to Noise Ratio

(SNR) of the LPC modelling procedure defined as:
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The average SNR was determined for a database of 2400 frames containing 2 male and 2

female speakers for a range of LPC orders.  The results are plotted (solid line) in Figure 5.3.

For comparison, the average SNR obtained by sampling the LPC spectrum at the harmonic

centres is also presented (dotted line).  The sampling is achieved using the following

expression:
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where the term ( )b am m−  given by (5.3) and (5.4) is a scale factor that is necessary for direct

comparison between the RMS average and sampled cases.
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Figure 5.3: Average SNR against p  for RMS (solid) and Sampled (dashed) { }�Rm

Before discussing the subjective testing it is useful to compare the baseline coder used in this

work to those employed in the literature.  The baseline generic coder speech quality is very

high, nearly transparent in many cases.  Therefore this coder will be extremely sensitive to any

distortions introduced by modelling or quantisation.  Note that this is in contrast to most of the

other harmonic coders that employ LPC modelling, many of these exhibit communications

quality speech before spectral modelling is employed and are therefore less sensitive to

additional distortion introduced by spectral modelling.  Thus the requirements for transparent

spectral modelling in the case of this coder are probably higher than many of the other coders

in the literature.

Informal subjective tests were conducted by processing several test databases and performing

listening tests with several listeners through high quality headphones.  A model order of

p =12  was used for the subjective tests, as this performed well in the objective tests.  The

LPC modelling stage introduces some noticeable distortion into the output speech, however

the distortions are relatively minor and the overall speech quality remains high.  A small

amount of bass reverberation was heard for very low pitch male speakers, this may be more

apparent through loudspeakers, however it is not a concern for band pass applications such as

speech through telephone networks.

The subjective tests support the objective tests in the choice of recovery methods for the

spectral magnitudes.  The RMS average scheme introduces less distortion for female speakers

than the sampled scheme.  For males speakers the two schemes both perform well.
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The objective and subjective results above show that the RMS average method is superior to

the direct sampling method, in particular for female speakers.  With high pitched female

speech, there are fewer harmonics.  Consequently, the LPC envelope sometimes attempts to

model individual harmonics, instead of providing a smooth spectral envelope that traces

through the harmonic peaks.  Thus for female speech, the LPC spectrum sometimes models

pitch structure as well as spectral envelope information.  It is suggested that the RMS average

method smooths out any pitch structure in the LPC envelope that produces distortion with the

direct sampling method.

From these results it was determined that a p =12  LPC model provides good results.  The

small trade off in speech quality was judged to be acceptable given the advantage in

quantisation that the LPC modelling provides.
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6. Parametric Phase Modelling

This chapter describes several parametric models for the compact representation of the

harmonic phases, { }θ m .  These models are applied to the baseline harmonic sinusoidal coder

presented in chapter 5 and evaluated using objective and informal subjective methods.  Speech

files are available via the internet which demonstrate the algorithms developed in this chapter

(Appendix B).  Compared to the near transparent baseline coder that uses original phases, the

speech quality is degraded to near toll quality (eg VSELP) for clean speech.

The human ear is often described as being relatively insensitive to the short term phase of

speech.  This argument has been used in several speech coding algorithms to discard the

measured phase information entirely.  It is then reconstructed at the decoder using techniques

that synthesise the phase function, for example using rule [12], or model based approaches

[22].

In practice, phase information is important for high quality synthesised speech.  While

discarding the phase information does not significantly reduce the intelligibility of speech, it can

introduce some unpleasant artefacts.  In particular, low pitched speakers such as males suffer

from reverberation when the harmonic phase information is removed.  Thus, for high quality

harmonic coding, transmission of phases in some form is necessary.

As with the harmonic magnitudes, the number of harmonic phases, L , varies from frame to

frame.  If the phases are directly quantised, this can lead to a prohibatively high bit rate.  Thus

several previous authors have implemented systems that only quantise the low order harmonic

phases, substituting uniformly distributed random phases for the high order harmonics

[30][17].

Several authors have developed schemes that model amplitude and phase simultaneously, for

example using ARMA techniques [43], or combinations of ARMA and vector quantisation

[42][44].  In general, the ARMA schemes described assume minimum phases systems.  Most

of the sinusoidal and MBE coder work has discarded the phase information, synthesising it at

the receiver using rule [12], or model based approaches [22].
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The work presented here is based on similar assumptions to [41], that speech is not, in general

minimum phase.  However unlike [41], the magnitude and phase information are treated

separately, resulting in three phase modelling schemes based on a general cascade minimum

phase/all pass system, excited by an impulse at time n0 .  Of these schemes, two are shown to

produce high quality speech using a small number of model parameters, with moderate to low

computational complexity.  The number of model parameters is fixed, despite the varying

number of harmonics from frame to frame.  For clean input speech, the synthesised speech

quality exceeds that of VSELP.

Section 6.1 describes the development of a phase model for voiced speech that consists of a

minimum phase LPC synthesis filter cascaded with an all pass filter.  It is shown that the all

pass filter has a strong linear phase component corresponding to the time shift of the original

signal, and a phase residual component.  Three candidate systems are then developed that

implement this model.  The first, described in section 6.2, uses a CELP type analysis by

synthesis loop to determine the model parameters.  The second system discussed in section 6.3

quantises the phase residual using truncated Discrete Cosine Transform (DCT) coefficients.

The third uses a least squares polynomial fit to the phase residual, that is weighted using the

harmonic magnitudes (section 6.4).

To evaluate the three phase modelling schemes an objective measure is developed in section

6.5, while techniques used to treat unvoiced speech are presented in section 6.6.  Finally,

results of informal listening tests are presented in section 6.7.

6.1. Minimum Phase/All Pass Filter Model

One aim of this research is to produce a model capable of accurately representing the harmonic

magnitudes { }Bm , and phases, { }θ m .  For convenience, these parameters will be combined

into the complex amplitudes { }Am , where:

A B em m
j m= θ (6.1)

As discussed previously, the all pole LPC model is an efficient way to represent the spectral

magnitude information using a small number of parameters.  However, normal LPC analysis

constrains the LPC synthesis filter to be minimum phase.  There is considerable difference of
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opinion in the literature as to whether minimum phase systems are suitable for modelling

speech.  In [41] it is argued that speech signals, in general, are not minimum phase, and that

moderate order (eg 14th) mixed phase systems are a more suitable choice.  In this case, non-

causal AR models were fitted to harmonic model magnitudes { }Bm , and phases, { }θ m

simultaneously.  Good results were reported using a 14th order mixed phase model for voiced

speech.

It should be noted at this point that several previous authors have used high order minimum-

phase systems successfully to model both the harmonic phases and magnitudes.  For example,

[22] used a high order (24-28 coefficient) cepstral model, and [24] used a high order (18-32

coefficient) LPC model.  The cepstral coefficients were found to fit the magnitude spectrum of

the speech, and the phase determined using the assumption that for minimum phase signals, the

phase and magnitude are related.  The authors reported that lowering the model order

introduced unpleasant artefacts into the synthesised speech, such as reverberation and muffling.

It is suggested that high order minimum phase systems can approximate the phase spectrum of

a non-minimum phase system.  However, in the previous chapter we have established that a

12th order LPC model is sufficient to represent the magnitude spectrum of the speech, and

raising the order significantly would seem wasteful.

Therefore we require a modelling scheme that can represent non-minimum phase signals with a

spectral magnitude component defined by a moderate order all pole LPC filter.  Any system,

( )H z , can be modelled as the cascade of a minimum phase filter and an all pass filter [5]:

( ) ( ) ( )H z H z H zap= min (6.2)

Thus our task is to determine a suitable all pass filter, such that when cascaded with a

minimum phase LPC synthesis filter ( ) ( )H z A zmin = 1 , produces a "close" match to the original

harmonic model parameters.  For this analysis the original model parameters Am and ω 0  are

assumed to be known.  The modelled parameters may be obtained by sampling ( )H z  at the

harmonic frequencies:

( )�A H em
jm= ω 0 (6.3)
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where � � �

A B em m
j m= θ .  A suitable cost function is therefore:

E A Am m
m

= −∑ �
2

(6.4)

As discussed in the previous chapter, the subjective distortion introduced by LPC modelling of

the spectral magnitudes is small.  It is therefore reasonable to assume B Bm m= � , in which case

(6.4) reduces to:

E B e em
j j

m

m m= −∑ 2
2

θ θ� (6.5)

It is interesting to examine the harmonic model parameters in the time and frequency domain.

Figures 6.2 and 6.3 illustrate the harmonic model parameters for the input speech signal in

Figure 6.1.  Figure 6.4 is the inverse Fourier transform of the harmonic model parameters,

denoted as a "prototype" after [40].  This signal is periodic in P  samples, several cycles are

plotted in Figure 6.4.  Note the strong likeness between the original speech and the time

domain prototype.
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Figure 6.1: Original Speech
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Figure 6.2: Harmonic Magnitude Samples { }Bm
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Figure 6.3: Harmonic Phase Samples { }θ m
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Figure 6.4: Time Domain Prototype

Note the strong linear phase component in Figure 6.3.  A linear phase shift in the frequency

domain corresponds to a time shift in the time domain.  We can thus model the prototype as
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the time shifted impulse response , ( )h n n− 0 , of a non-minimum phase filter ( )H z , where n0

is the impulse position.  This approach is similar to [41].  A related approach is presented in

[19] by considering the vocal tract filter ( )H z  to be excited by a steady series of impulses

during constant voiced speech.  A pitch pulse occurs at time n0  when all the sine waves in the

harmonic model add coherently.

6.2. Analysis by Synthesis Phase Model

This section describes a first order approximation to the all pass filter ( )H zap  comprised of a

linear phase component defined by the onset time n0  and a phase term specified by a complex

gain ( )G ω .  These parameters can be found using an analysis by synthesis technique, similar to

the codebook search used in CELP.

The modelled complex harmonic amplitudes are defined as:

( )
( )

�A
G m e

A e
m

jn m

jm
=

−ω ω

ω
0

0 0

0
(6.6)

This has a phase component:

( )[ ] ( )[ ]� arg argθ ω ωω
m

jmA e G m n m= − + −0
0 0 0 (6.7)

Both �Am and �θ m  are defined over the range m L= 1, ,� .  Note the distinction between the

LPC analysis filter ( )zA , and the complex sinusoidal model parameters { }mA .

To produce a real synthesised time domain signal, ( )G ω  is considered to be conjugate

symmetrical about the frequency axis:

( )G
G e

G e

j

j
ω

ω
ω

ϕ

ϕ=
>
<





−
0

0

0

0
(6.8)

where G0  is a real positive constant and ϕ  is a real constant.  Thus the phase of ( )G ω  is

constant for all positive and negative frequencies, but changes sign at ω = 0 .
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For analysis purposes it is only necessary to consider the positive frequencies, ie m L= 1, ,� .

In this case we represent the complex gain as a constant, G G ej= 0
ϕ .  Equation (6.6) therefore

models the all pass component of the phase spectrum as having a constant component ϕ , and

a linear component described by n0 .  A cost function can be defined in terms of these

parameters by substituting (6.6) into (6.4) with ( )G m Gω 0 = :

( ) ( )E n G A
Ge

A e
m

jn m

j m
m

L

0
1

2
0 0

0
, = −

−

=
∑

ω

ω (6.9)

The model parameters can be estimated using an exhaustive analysis by synthesis procedure,

similar to that used for CELP codebook searching.  For a range of impulse positions,

n P0 0 1 1= −, , ,� , the optimal complex gain G  is determined.  The error can then be

determined for each n0  by evaluating (6.9).  After all n0  positions have been evaluated, the

value that minimises (6.9) is chosen, along with the corresponding complex gain G .

The range of n0  positions can be limited to the pitch period P  as the time and frequency

domain forms of �Am  are periodic in  P = +2 0 50π ω . .  An n0  resolution of 1 sample was

found to be adequate by experiment.

The complex gain G  for a given n0  can be obtained using a least squares fit (Appendix A.18)

as:

G
H

H
= a c

c c

�

� �
(6.10)

where:

[ ]aT
LA A= 1� (6.11)

[ ]� � �cT
LC C= 1� (6.12)

( )
�C

e

A e
m

jn m

j m
=

− 0 0

0

ω

ω (6.13)
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Figures 6.5 to 6.8 illustrate the operation of the analysis by synthesis phase model for a single

frame of male speech.  A 12th order LPC model was used for ( )H zmin .  Original magnitudes

are used, so all errors are due to the phase modelling.  Figure 6.5 is a plot of the original and

modelled phase spectrums.  Note the close match at the low frequency end of the spectrum,

but somewhat poorer match at higher frequencies.  This effect is also evident in Figure 6.8, a

plot of the original and error (modelling noise) magnitude spectrums.  The error magnitude

spectrum is defined as:

( )E m A Am m

2 2
= − � (6.14)

for m L= 1, ,� .  The low frequency, high energy regions of the spectrum have a smaller error

than the high frequency, low energy regions.  These effects are due to the error energy

minimising properties of the cost function, equation (6.9).

Figures 6.6 and 6.7 show the original and modelled prototypes, note the close match in these

time domain waveforms, due to the error energy minimising properties of the cost function.

The low energy, high frequency error energy is less visible in the time domain plots than the

error magnitude spectrum in Figure 6.8.
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Figure 6.5: Original (solid) and Modelled (dashed) Phase Spectrum
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Figure 6.6: Original Prototype
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Figure 6.7: Modelled Prototype
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Figure 6.8: Original (solid) and Error (dashed) Magnitude Spectrum
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6.3. Truncated DCT Phase Model

This section presents another approach to the phase modelling problem.  In this case the

synthesised speech is modelled as a cascade of a minimum phase LPC synthesis filter and an all

pass filter.  The system is excited by a unit impulse at time n0 , and the modelled complex

amplitudes are recovered by sampling the modelled spectrum at the harmonic frequencies.  The

all pass filter is defined by its phase spectrum, a function of frequency.

The modelled complex harmonic amplitudes are defined as:

( )
( )

�A
ge H e

A e
m

jm n
ap

jm

jm=
− ω ω

ω

0 0 0

0
(6.15)

where g  is a real gain factor and ( )H eap
jmω 0 1= .  The LPC filter coefficients and gain g  can

be found using standard time domain LPC analysis.  For this phase modelling technique, we

assume that the LPC model represents the harmonic magnitudes adequately, therefore a cost

function of the form (6.5) can be used.

This phase model is defined by the parameters n0  and ( )H zap .  Note that compared to the

previous section, the gain factor g only describes the magnitude of the system, not the

magnitude and constant phase term.  In this case, the constant phase component is absorbed

into the all pass filter ( )H zap .

The phase model parameters can be sub-optimally found using a sequential process.  First the

dominant linear phase component described by n0  is removed, and the remaining phase

residual component modelled using ( )H zap .

To determine n0 , a cost function can be defined that represents the modelled phase as the LPC

synthesis filter excited by the shifted impulse (ie we have removed the all pass filter for this

stage of the minimisation):

( ) ( )
( )E n B e

e A e

A e
m

j

jm n jm

jm
m

L
m

0
2

2

1

0 0 0

0
= −

−

=
∑ θ

ω ω

ω (6.16)
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Note the normalising term ( )A z , this is included as we are interested in only the phase of

( )1 A z .  The impulse position n0  is determined by sampling (6.16) in the range

n P0 0 1 1= −, , ,�  to determine the minima.  The phase residual φ m  can then be determined as:

( )
φ

ω

ωm

m
jm

jm n

A A e

e
=













−arg
0

0 0
(6.17)

for m L= 1, ,� .  As the dominant linear component has been removed, the dynamic range of

{ }φ m  is generally much smaller than that of the harmonic phases { }θ m .  More importantly, for

voiced speech, adjacent values in the set { }φ m  are usually highly correlated.  This suggests that

higher coding efficiencies may be obtained by coding { }φ m  than { }θ m .  The phase residual

spectrum { }φ m  is plotted (solid) in Figure 6.9.  Compare this to the original phase spectrum

from the same frame in Figure 6.5.

The phase residual spectrum can be considered to be the ideal phase spectrum of ( )H zap .  That

is, if we can devise a method to model the phase residual perfectly, then we can reconstruct the

original phases.

The high correlation of the phase residual suggests that a decorrelation procedure might be

used to compactly model this signal.  The Discrete Cosine Transform (DCT) was therefore

employed, due to it's well known near optimum decorrelation properties [7].  The following

form of the DCT was used:

( ) ( ) ( )
V k c k

m k

L
k Lm

m

L

=
+






 = −+

=

−

∑φ
π

1
0

1 2 1

2
0 1 1cos , ,� (6.18)

( )V k  represents the DCT of φ m  and ( )c k  is defined as:

( )c k
k

k L
=

=

= −




1 0

2 12 1, ,�
(6.19)

The Inverse DCT (IDCT) is defined as:
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( ) ( ) ( )
1,,1,0

2

12
cos

1ˆ
1

0
1 −=






 += ∑

−

=
+ Lm

L

km
kckV

L

L

k
m �

πφ (6.20)

The DCT coefficients ( )V k  of the phase residual in Figure 6.9 are plotted in Figure 6.10.

Note the dominance of the low order coefficients at the left hand side of Figure 6.10, indicating

a highly correlated signal.  A reasonable assumption is that a subset of the DCT coefficients:

( ) ( )
�V k

V k k C

k C
=

≤
>



0

(6.21)

where C L≤  may be sufficient to represent the phase residual.  The modelled phase residual

obtained from the truncated DCT coefficients ( )�V k  (with C = 5) is plotted (dashed) in Figure

6.9.  The modelled phase residual is a smoothed version of the original phase residual, due to

the truncation of the DCT coefficients.  The general shape of the original phase residual is

preserved.
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Figure 6.9: Original (solid) and Truncated DCT modelled (dashed) Phase Residual Spectrums
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Figure 6.10: DCT Transform of Phase Residual
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Figure 6.11: Original Prototype
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Figure 6.12: Modelled Prototype
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Figure 6.13: Original (solid) and Error (dashed) Magnitude Spectrums

The effectiveness of this phase modelling scheme can be gauged by examining the modelled

prototype in Figure 6.12 and the error magnitude spectrum in Figure 6.13.  Both figures

indicate that this scheme performs poorly.  Truncating the DCT coefficients does not take into

account the relative importance of different parts of the spectrum.  For example, high energy

regions of the spectrum contribute a larger error energy for a given phase error than low

energy regions.

6.4. Weighted Polynomial Phase Model

The previous section highlighted the need for a phase modelling scheme that takes into account

the relative error contribution of different parts of the spectrum.  The analysis by synthesis

phase modelling technique (first scheme presented) is such a method, however this scheme is

limited to a first order approximation of the phase spectrum (linear plus constant phase term).

This section introduces a third phase modelling scheme that fits a weighted K th  order

polynomial to the phase residual spectrum.  The polynomial fit is weighted to provide a better

fit in perceptually important high energy areas of the spectrum than in low energy areas.  In

other respects, this scheme is similar to the truncated DCT technique, an impulse at time n0

excites a cascade of a minimum phase LPC synthesis filter and an all pass filter.  However in

this case, the all pass filter phase spectrum (phase residual spectrum) is described by a K th

order polynomial.
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As in the previous section, a two stage analysis procedure is employed.  First, the dominant

linear phase term described by n0  is removed to obtain the phase residual samples { }φ m .  This

procedure is described in the previous section.  Next, the K th  order polynomial is fitted to the

the phase residual samples { }φ m .

To derive the polynomial fitting procedure a cost function in the form of (6.5) is used.

E B e em
j j

m

L
m m= −

=
∑ 2

2

1

θ θ� (6.22)

Expressing in terms of the linear phase and phase residual components:

( ) ( )E n B e e eL m
jn m j j

m

L
m m

0 1
2

2

1

0 0, � , , �
�φ φ ω φ φ

� = −−

=
∑ (6.23)

which can be reduced to:

( )E B e eL m
j j

m

L
m m� , , �

�φ φ φ φ
1

2
2

1

� = −
=

∑ (6.24)

as the linear phase component has unit magnitude.  Expanding (6.24) for positive and negative

sides of the spectrum (and assuming the DC term B0 0= ):

( )2 1
2

1

2
2

1

2

E B e e B e eL m
m

L
j j

m
m

L
j jm m m m� , , �

� �φ φ φ φ φ φ
� = − + −

=−

−

=
∑ ∑ (6.25)

Due to the conjugate symmetry of the phases it can be shown that:

( ) ( )( )E BL m m m
m

L

� , , � cos �φ φ φ φ1
2

1

2 1� = − −
=

∑ (6.26)

A similar result is presented in [42].  For small angles, a first order Taylor series approximation

for ( )cos x  is:

( )cos x
x= −1
2

2

(6.27)
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This approximation is coarse for large angles, however it allows a tractable solution to the least

squares problem, and as will be shown, produces good results.  Substituting this approximation

into (6.26) leads to an elegant least squares expression:

( )E Bm m m
m

L

= −
=

∑ 2 2

1

φ φ� (6.28)

Thus to minimise E , the error between the original and synthesised prototypes, we must

minimise the squared phase error weighted by the energy of each harmonic.  Consider the K th

order polynomial approximation to φ m :

�φ m K
Kc c m c m c m= + + + +0 1 2

2
� (6.29)

The error at the mth  harmonic can be expressed using vectors as:

( )( )cp T
mmm mBe −= φ (6.30)

where:

[ ]cT
Kc c= 0� (6.31)

( ) [ ]p m m m mT K= 1 2
� (6.32)

It is possible to express the error at all harmonics:

e Bq BMc= − (6.33)

where:

B =























B

B

BL

1

2 0

0

.

.

(6.34)

[ ]qT
L= φ φ φ1 2 � (6.35)
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[ ]eT
Le e= 1� (6.36)

( )
( )

( )

M

p

p

p

=









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









1

2

T

T

TL

�

�

(6.37)

Comparing (6.33) to (6.28) we can see that minimising E  is equivalent to minimising e .

Using the results in Appendix A, we can see that minimising e  is the "best-fit" solution to the

over determined set of equations (6.33).  From equation A1.8, this solution is:

( )c M B BM M B Bq=
−T T T T1

(6.38)

This expression can be reduced to the problem of solving the matrix equation:

Rc u= (6.39)

where R  is a K +1 by K +1 matrix:

R M B BM= T T (6.40)

R B iij i
k j

i

L

= +

=
∑ 2

1

(6.41)

and u  is a K +1 element column vector:

u M B B= T T (6.42)

u B ij i i
j

i

L

=
=
∑ 2

1

φ (6.43)

Figures 6.14 to 6.17 illustrate the operation of the weighted polynomial phase modelling

technique.  The model order is K = 4 .  Note the close match between the modelled and

original phase residual in Figure 6.14 in the high energy areas.  Also, the original and modelled



Chapter 6 - Parametric Phase Modelling

106

prototypes in Figures 6.15 and 6.16 are very similar.  Figure 6.17 shows that the error energy

is suppressed in the high energy formant regions.
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Figure 6.14: Original (solid) and Modelled (dashed) Phase Residual
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Figure 6.15: Original Prototype
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Figure 6.16: Modelled Prototype
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Figure 6.17: Original (solid) and Error (dashed) Magnitude Spectrums

6.5. Objective Results

To quantify the relative performance of the 3 phase modelling schemes, a Signal to Noise Ratio

(SNR) measure was devised.  This measure determines the signal to noise (error energy) ratio

for each frame:

( )( )
SNR

B

B

m
m

L

m m m
m

L=
− −



















=

=

∑

∑
10

2 1
10

2

1

2

1

log
cos �θ θ

(6.44)

which is measured in dB.  It is important to note here that this measure is only used to evaluate

the error contribution of modelling the phases, the magnitudes { }Bm  are assumed to be

modelled perfectly.  Average SNR values were determined for a test database of 2 male and 2

female speakers, a total of 2400 frames of clean (no additive noise) speech.  The results are

tabulated in Table 6.1.

These results support the examples given in the previous sections of this chapter for the 3

schemes.  The analysis by synthesis and weighted polynomial schemes appear to perform quite

well, whereas the truncated DCT scheme does not.  The weighted polynomial scheme shows

steady improvement as the polynomial order increases.
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Model Order SNR (dB)

Analysis by Synthesis n/a 6.53

Truncated DCT C = 5 2.77

Weighted Polynomial K = 2 5.86

Weighted Polynomial K = 3 7.43

Weighted Polynomial K = 4 8.54

Table 6.1: Average SNR Results for Phase Modelling Schemes

The average SNR values are fairly low as the results are averaged across the entire test

database which includes many silence and unvoiced frames.  In these cases the SNR is usually

very low which drags the average SNR down.  In strongly voiced frames, the SNR can be

quite high, typically between 10 and 20 dB.

6.6. Unvoiced Speech

Initial listening tests during development indicated that the phase modelling schemes performed

quite well for voiced speech but introduced harsh periodic sounds during unvoiced speech,

which were perceptually very annoying.  This is because for unvoiced speech the phases are

generally random.  All of the phase modelling schemes developed assume a measure of

correlation between adjacent phases and force this correlation onto the modelled phases, thus

introducing periodic artefacts into synthesised unvoiced speech.

To improve the quality of unvoiced speech, a simple two band voicing model was used.  This

model randomises the phases above a transition harmonic, and uses the phase model beneath

the transition harmonic.  The transition harmonic is determined using a rule based approach:

( )




>
≤

=
TSNRL

TSNRTSNRL
LT (6.45)
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Where T  is the threshold at where unvoiced energy starts to be introduced.  As the SNR

decreases, more and more unvoiced energy is introduced, until the whole spectrum is

unvoiced.  The threshold T  was chosen by experiment to be 5 dB.

As discussed in section 5.1 the addition of a voicing model is necessary only for the phase

models considered in this chapter.  The baseline unquantised generic coder does not implicitly

require a voicing model.

6.7. Informal Listening Tests

With the voicing model incorporated, the quality of the three schemes could be evaluated using

informal listening tests.  Four test utterances were used, two male and two female.  Of these,

one male and one female were clean speech, the other male and female were corrupted by a

moderate amount of periodic background noise to simulate a mobile acoustic environment.

The 3 models were compared to the baseline coder and a VSELP simulation.  High quality

headphones were used for replay.

Informal tests using several listeners agreed that the high order weighted polynomial generally

performed better, although the analysis by synthesis scheme was often very close.  The

truncated DCT scheme performed poorly, with very rough speech emerging from some voiced

sections.

The general conclusion was that for clean speech the analysis by synthesis and weighted

polynomial phase models were superior to VSELP, however for speech corrupted by

background noise the quality was about equal to VSELP.  All of the phase modelling schemes

were inferior (in varying degrees) to the baseline coder, which for clean speech was almost

transparent.

The main artefacts appear to be related to the two band voicing model.  For example, some

unvoiced sections still have audible periodic artefacts, and "rough" background noises can

occasionally be heard in voiced sections.  Both of these problems indicate occasional incorrect

voicing decisions.
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7. Quantised Sinusoidal Coder

This chapter describes the development of a quantised sinusoidal coder based on the

techniques developed throughout this thesis.  The main purpose of this coder is to tie together

the techniques presented in this thesis.  It should be stressed that the coder is not optimised and

therefore not illustrative of the final quality possible from sinusoidal coding techniques.

LPC
Analysis

LSP
Quantisation

Recover

{ }�Rm

{ }a Gk ,

{ }� , �a Gk

{ }�Rm

( )s n

Generic
Sinusoidal
Analysis { }θ m

NLP Pitch
Estimation

ω 0

Analysis by
Synthesis Phase

Modelling

n0

ϕ

LT

ω 0

{ }ω i G,

Figure 7.1: Block Diagram of Quantised Sinusoidal Encoder

Section 7.1 describes the operation of the quantised coder, and presents the techniques used to

quantise the various parameters,  section 7.2 describes the training procedure and results for

the LSP quantisers.  Section 7.3 evaluates the effects of the various stages of quantisation on

the performance of the coder using objective measures and informal subjective testing.  Speech

files are available via the internet which demonstrate the various stages of quantisation

(Appendix B).
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7.1 Quantised Coder Operation

Figure 7.1 illustrates the quantised sinusoidal coder operation.  Input speech ( )s n  is used to

determine the fundamental frequency for the current 10 ms frame ω 0  using the Non-Linear

Pitch (NLP) algorithm described in Chapter 4.  The speech is then modeled using the

sinusoidal analysis algorithms developed in Chapter 5, however in this case only the harmonic

phases { }θ m  are required, as the spectral magnitudes are determined using the LPC spectral

modeling method also described in Chapter 5.

Parameter Symbol Bits/Frame Bits/s

Line Spectrum Pairs { }ω i
52 5200

LPC Gain in dB GdB 5 500

Fundamental Frequency ω 0 8 800

Phase model impulse position n0 8 800

Phase model phase of complex gain ψ 5 500

Phase model voicing transition frequency LT 5 500

Total 83 8300

Table 7.1: Bit allocation of Quantised Coder

Note that the LPC analysis produces both spectral shape information in the form of LPC

coefficients { }ak , and a scalar gain parameter expressed in dB GdB.  Quantisation of the LPCs

is achieved by converting the LPC coefficients to Line Spectrum Pairs (LSPs), and scalar

quantising each LSP.  The LSP quantiser design is described later in this chapter.  The LPC

gain is uniformly quantised in the log domain.  The recovered RMS spectral magnitudes { }�Rm

are then used with the phases from the sinusoidal analysis { }θ m  as the “target” for the phase

modeling process.
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The Analysis by Synthesis phase modeling scheme was chosen for the quantised coder due to

the ease of quantisation compared to the Weighted Polynomial scheme.  The parameters

determined by the phase model n0 , ψ  (the phase of the complex gain term), and the voicing

transition parameter LT  are all scalar quantised.  Note that the magnitude of the complex gain

term does not need to be transmitted, as this information is conveyed by the LPC gain

parameter discussed above.

The quantised parameters sent to the decoder and the bit allocations are summarised in Table

7.1.

The parameters GdB, ω 0 , ψ  and LT  are linearly quantised using a similar method.  We wish

to represent a real number x  with a b -bit integer code c  over the range xmin  to xmax .

c
x x

x x
b= −

−
+









min

max min

.0 5 2 (7.1)

The quantised value �x can then be recovered from the code:

( )� max min minx
c

x x x
b

= − +
2

(7.2)

Table 7.2 lists the parameters for each of the four linear quantisers used in the quantised

sinusoidal coder.

Parameter Symbol b xmin xmax

LPC Gain in dB GdB 5 -20.0 60.0

Fundamental Frequency ω 0 8 50 Hz 400 Hz

Phase model phase of complex gain ψ 5 −π π

Phase model voicing transition frequencyLT 5 1 L

Table 7.2: Linear Quantiser Parameters
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7.2 LSP Quantiser Training

The scalar quantisers were trained using a 22 minute database extracted from the TIMIT CD-

ROM.  Vectors of 12 LSPs were determined at 10 ms intervals, scalar quantisers were then

developed for each quantiser using the Lloyd-Max [52] training algorithm.  The bit allocation

was adjusted experimentally to minimise the average Spectral Distortion (SD) over a 24

second test database of two male and two female speakers.  The test database material was

from outside the training database.  The SD for a given frame is defined as [59]:

( ) ( )( )SD
N

A k A kdB
dft k

Ndft

= −
=

−

∑1
20 2010 10

2

0

1

log log � (7.3)

where ( )A k  and ( )�A k  are defined as the Ndft  point DFTs of the original and quantised LPC

coefficients.  It is widely accepted [51] that for transparent quantisation of LPC parameters:

• The average SD must be less than 1 dB.

• Less than 2% of frames must not have an SD greater than 2dB.

• No frames must have an SD greater than 4dB.

Using the 24 second test database, quantisers of several bit allocations were tested.  It was

found that a quantiser with a 4,5,5,5,5,4,4,4,4,4,4,4 bit allocation for LSPs 1 to 12 gave results

close to those required over the 24 second test database.  The average SD results for several

test databases are presented in Table 7.3.  The first row is the 24 second database used for

experimentally deriving the bit allocation.

Note that the LSP quantiser performs poorly for speech data outside of the training database,

despite the relatively high bit rate of 52 bits/frame.  This is perhaps due to different recording

conditions or spectral characteristics in the test databases, and highlights the need for training

material from several different sources/recording conditions.
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Description Frames Average SDdB >2dB(%) > 4dB(%)

24 second, 2 male, 2 female,

Australian accent

2400 1.05 3.58 0.06

60 second, mixed male and

female, English accent

6000 1.35 19.14 1.83

120 second, mixed male and

female, BBC radio broadcast

12000 2.31 49.45 13.76

20 seconds from within training

database (TIMIT CD-ROM)

2000 0.82 1.65 0.00

Table 7.3: LSP Quantiser Test Results

7.3 Quantised Coder Testing

This section describes the objective and subjective testing of the quantised sinusoidal coder

(see also section 3.9).  To evaluate the objective effect of the various quantisation stages, a

SNR measure is proposed that is similar to the SNR measures used in sections 5.3 and 6.5.

The SNR measure in section 5.3 was derived to test the spectral magnitudes and hence

considered magnitudes only.  The SNR measure in section 6.5 was derived to test the phase

modeling and hence considered phase distortion only (weighted by the magnitude of each

harmonic).  The SNR measure below considers both magnitude and phase, and is compatible

with both of the earlier measures:

( )
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where { }Am  are the complex harmonic sinusoidal amplitudes for the current frame such that

A B em m
j m= θ .  Note that this expression reduces to the earlier SNR expressions presented in
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sections 5.3 and 6.5 if the phases or magnitudes are considered to be unchanged by the

modeling/quantisation under test.

Condition Average SNR (dB)

Test LPC LSP Phase Phase Q G +ω 0  Q

A X 15.73

B X X 12.03

C X 6.12

D X X 5.50

E X X X 4.07

F X X X X 3.76

G X X X X X 2.40

Table 7.4: Sinusoidal Coder Quantisation Objective Test Matrix

Option Description

LPC 12th order LPC modeling of spectral amplitudes

LSP LSP quantisation of LPC model

Phase Analysis by Synthesis phase modeling

Phase Q Quantisation of A by S phase model parameters n0 ,ψ , and LT

G +ω 0  Q Quantisation of LPC Gain term and fundamental frequency

Table 7.5: Definition of Quantisation and Modeling Options

For a database of 2400 frames comprising two male and two female speakers a range of

quantisation and modeling conditions were tested using the objective measure, and tabulated in
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matrix form in Table 7.4.  The presence of an ‘X’ indicates which quantisation options are

switched on for each test.  The various quantisation options are explained in Table 7.5.

A steady decrease in average SNR is observed as the various quantisation options are enabled,

with a large drop evident when the Analysis by Synthesis phase modeling is switched on.  The

reasons for this large drop are discussed in section 6.5.

Subjective testing was performed by informally evaluating the speech synthesised under the

conditions listed in Table 7.4 over the 24 second (2400 frame) database of 2 male and two

female speakers.  High quality stereo headphones were used for the tests.  Results indicate that

tests A and B produced synthesised speech of relatively high quality, close to the baseline

coder.  The LSP quantiser (test B) produced no additional subjective distortion compared to

LPC modeling alone (test A), indicating that for this test database at least, LSP quantiser

performance is acceptable as predicted by the SD tests in the previous section.  In this case the

SNR measurements that suggest a significant drop in quality between test A and test B do not

correlate with the subjective results.

Phase modeling alone produced synthesised speech roughly equivalent in subjective quality to

VSELP.  However, when LPC modeling and LSP quantisation was applied to the phase

modeled coder (test E), the speech quality dropped significantly.  The drop in subjective

quality is much larger than when the LPC and LSP options were applied to the coder before

phase modeling.  This is perhaps due to some dependence of the phase model on the integrity

of the LPC parameters, which are used to obtain the minimum phase component of the phase

model.  Another possibility is that the quantised LPC parameters upset the rather delicate

balance of the voicing model constants, which were experimentally derived with LPC

modeling/quantisation switched off.  Section 8.2 discusses possible ways to improve the quality

of the coder.  The final two quantisation steps (tests F and G) produced no further decrease in

subjective quality.
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8. Conclusions and Further Work

In the preceding chapters, several original techniques suitable for sinusoidal speech coding

were presented.  Section 8.1 summarises the work presented in this thesis, and highlights and

compares the original contributions to the current state of the art.  Finally, several areas for

further work are presented in section 8.2.

8.1 Significance of New Work

Time and frequency domain speech coding techniques were introduced in Chapters 2 and 3.

These chapters presented background information, including discussions of several time and

frequency domain coding techniques, and the mathematical framework necessary for

presenting the original contributions in later chapters.  Several minor contributions were

presented in these chapters, including:

• In Section 2.5.3 an analytical discussion of the CELP analysis by synthesis codebook

search, including a mathematical treatment of filter memory effects.  Although the practical

use of this information is widely known, no equivalent treatment has been found in the

literature.

• In Section 3.4 a derivation of the MBE (3.19) and harmonic sinusoidal (3.16) analysis

equations.  Results similar to those obtained from this analysis have been previously

published, but equivalent derivations have not been found in the literature, although

alternative derivations have been presented for the sinusoidal analysis equations.  This

work derives the MBE and sinusoidal equations using the same framework, thus

illustrating the similarity of the two models.

• In section 3.7 qualitative arguments demonstrated that due to assumptions of short term

stationarity over 10-30 ms intervals, problems can occur in the parameter estimation

techniques used for harmonic sinusoidal and MBE coders.  For example a changing

fundamental 0ω  across the frame can “smear” the high order harmonics across the

frequency axis, causing spectral magnitude and voicing estimation errors for MBE coders.

Transition frames (those containing onsets or voiced/unvoiced changes) can also cause
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partial or complete breakdown of the parameter estimation algorithms.  These observations

lead to the selection of a short frame update rate for the generic sinusoidal coder presented

in Chapter 5.  No equivilent treatment of this subject is known to the author at this time.

Chapter 4 presented the NLP pitch estimation algorithm.  This algorithm has two original

features:

• The use of a square law non-linearity as a basic pitch extractor.

• Post processing of the resulting pitch candidates using a second pitch estimation algorithm,

in this case the MBE pitch estimation algorithm.

The algorithm was carefully designed and tested using three different methods, (objective,

contour and subjective) over a range of speech sources with good results.  Another original

contribution was the analysis of failure modes and suggested improvements including a simple

tracking algorithm.

While other pitch estimators use the same basic pitch extractor/post processing structure of the

NLP algorithm, it has several unique features.  A survey of existing pitch estimation algorithms

suggests that no other algorithms in the literature use a non-linearity combined with a second

pitch estimator for post processing. The non-linearity is used specifically to enhance the

fundamental through the superposition of difference tones produced by harmonic distortion.

Although this effect is widely known [4] it’s use is uncommon in current, state of the art pitch

estimation algorithms.

The testing of the NLP algorithm involved the use of a high quality unquantised sinusoidal

coder algorithm.  Often, pitch estimation algorithms are associated with communications

quality [30] or synthetic quality (eg LPC) vocoders.  In these coders, pitch detector errors are

often masked by other artifacts in the coding process, thus subjective tests of pitch detector

performance based on speech quality may have a lower “resolution” than if the same pitch

detector was tested with a high quality coder.  The high performance of the unquantised

sinusoidal coder presented in this thesis demonstrates the reliability and robustness of the NLP

pitch estimation algorithm.
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Chapter 5 presented the high quality unquantised sinusoidal coder.  This coder is related to

existing sinusoidal and MBE coders, however the techniques used in the analysis, synthesis,

and spectral modelling stages differ from those commonly used in the literature as follows:

• The use of a 10 ms frame rate to provide good transient response to non-stationary speech

segments.  This frame rate has been used in some of the earlier, non harmonic sinusoidal

coders [17], however all recent harmonic sinusoidal and MBE coders employ frame lengths

of 20 ms or longer.

• The use of an RMS spectral magnitude measure { }Rm  that is relatively insensitive to errors

in fundamental estimation and the voiced or unvoiced nature of the energy in the current

band compared to the traditional MBE and sinusoidal estimation techniques.

• The use of harmonic phases to convey voicing information, which removes the need for a

voicing estimator in the unquantised generic sinusoidal coder.  This feature has been used

in earlier, non-harmonic sinusoidal coders [17], but not in harmonic sinusoidal coders.

• An RMS average method of spectral magnitude recovery from LPC models that provided

an efficient means of modelling the spectral magnitudes with a moderate order LPC model

while maintaining high speech quality.  This method is considerably lower in algorithmic

complexity compared to other schemes (summarised in section 5.3) found in the literature.

Informal listening tests through high quality headphones indicated that the speech quality

obtained from the generic coder was very high, almost transparent in many cases.  The LPC

modelling introduced a small amount of distortion, however the overall quality remained high.

The phase modeling techniques presented in Chapter 6 apply a voicing measure to the coder

but this is not fundamental to the operation of the unquantised coder, unlike other algorithms

such as MBE [28].  For example, other phase modeling/quantisation algorithms could be

employed (eg vector quantisation [60]) that do not require voicing measures or decisions.

Chapter 6 presented three original phase models, of which two were shown to be capable of

adequately representing phase by the ability to reproduce good quality speech.  Phase is usually

ignored in sinusoidal and MBE coders, often discarded at the analysis stage and then

reconstructed at the decoder using heuristic techniques [28].  Very few authors have attempted
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to introduce parametric phase models, although several have presented combined

phase/magnitude parameteric models [41][42][43][67].

The basic assumption was that the phase spectrum could be modelled as the cascade of a

minimum phase filter and an all pass filter, excited by an impulse at time n0 .  In all cases a LPC

filter provides the minimum phase component, while the various phase models attempt to

model the phase residual, or all pass component.  The three phase models where:

• The Analysis by Synthesis model, where an impulse with a constant complex gain  excites

an LPC synthesis filter at time n0 .  In this case the pulse position provides a linear phase

term, and the angle of the complex gain term provides a constant phase term.  Thus the all

pass filter can be considered a 2nd order polynomial (straight line) approximation to the

phase residual spectrum.  The parameters of the phase model are determined using an

analysis by synthesis loop, similar to CELP or multipulse algorithms.  This method

produced good quality synthesised speech.

• The second phase model used Truncated DCT Coefficients to represent a smoothed

version of the all pass filter phase spectrum.  The motivation for this was that for voiced

speech, the phase spectrum is smooth after removal of the dominant linear component

caused by the excitation instant, n0 , thus the DCT was used to decorrelate the phase

residual spectrum and transmit only the low order DCT coefficients.  However, this

produced significant distortions in the synthesised speech.  This was traced to the inability

of the method to take into account the magnitude of the various spectral components when

fitting the phase model, unlike the analysis by synthesis phase model.

• This provided the motivation for the Weighted Polynomial phase model, which used a K th

order polynomial fit to the phase residual spectrum.  By using an approximation, it was

shown that a tractable least squares solution could be found to fit the polynomial while

taking into account the relative importance of each phase based on the magnitude of the

spectrum at each harmonic frequency.  This method also provided good quality speech.

All of the phase models assumed a certain correlation in the phases of adjacent harmonics,

which is true for voiced speech.  However, to deal with unvoiced speech, a simple voicing

model was introduced, so that the three phase models could be evaluated for real speech
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signals.  Overall, the weighted polynomial scheme performed best, however in many cases the

analysis by synthesis scheme came very close.

Finally, chapter 7 combined the techniques presented in this thesis to produce a fully quantised

8.3 kbit/s coder.  This coder used a 12th order LPC model quantised with LSPs, and the

analysis by synthesis phase model.  The effects of the various quantisation and modelling stages

were analysed using objective and informal subjective methods.  Although the amplitude and

phase modelling/quantisation stages work well when separated, some degradation in speech

quality was observed when they were combined.  The reasons for this degradation are at this

stage unclear, however they provide plenty of scope for further work (see below).

A discrepancy between subjective and objective results was noted, the objective results

suggesting poorer performance than perceived using informal subjective tests.  As discussed in

section 3.9 of this thesis such differences in objective and subjective measure performance are

common in speech coding research due to the inability of simple objective distance measures to

exactly model human perception of speech signals.

8.2 Further Work

One of the main features of the NLP algorithm is the two stage basic extraction/post

processing concept, where a basic pitch extractor provides a set of candidates which are tested

by sampling another pitch estimator.  It would be useful to implement this technique using

pitch estimator combinations other than NLP/MBE and compare results.

In vocoder algorithms such as sinusoidal/MBE pitch estimation is usually performed “open

loop”, for example the pitch is estimated, then passed to the next analysis stage as an input.

This differs from CELP-type analysis by synthesis coders that typically extract the pitch using a

closed loop search.  The closed loop search effectively determines the effect of a set of pitch

candidates on the next analysis stage, then chooses the pitch accordingly.  It is suggested that a

vocoder pitch estimation algorithm could also be implemented in an analysis by synthesis

fashion, perhaps by evaluating a set of basic pitch extractor candidates using the vocoder

analysis and modelling stages, and comparing the resultant speech to the original.
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A significant problem with the phase models presented in this thesis in the inability to deal with

unvoiced harmonics, all of the models assume some degree of correlation in adjacent phase

residuals which force a voiced structure onto the modelled phases.  This was overcome for the

purposes of listening tests by introducing a crude two band voicing model, however a phase

scheme that can deal with voiced and unvoiced speech without the need for an external voicing

estimator would be a more robust approach.

The LSPs consume a large portion of the quantised coder bit rate, this could be reduced by

exploiting time domain correlation in adjacent 10 ms frames, and using vector quantisation of

LSPs.  Given many references cite less than 25 bits/frame for 10th order LSP quantisers [51] it

should be possible to achieve less than 30 bits/frame for a 12th order quantiser.  The poor

performance of the quantiser outside of the training database highlights the need for careful

quantiser design using a training database obtained from more than one recording condition.

The objective and subjective testing of the quantised coder suggests the analysis by synthesis

phase model is sensitive to quantisation and modelling of the LPC coefficients.  This may be

due to distortions introduced into the quantised LPCs that affect the ability of the phase model

to match the original phases, or problems with the voicing estimator and should be investigated

further.
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Appendix A

A1.1 Solving Overdetermined Systems using Orthogonal Projection

In many parameter estimation problems we wish to minimise some cost function with respect

to a set of parameters.  After manipulation, this often reduces to a set of m  equations and n

unknowns, such that m n> .  In these cases no exact solution is possible, however a "best fit"

solution in terms of minimum squared error may still be obtained.  This appendix presents a

generalised derivation of least squares minimisation from a linear algebra point of view [45].

Although similar results may be obtained using calculus, linear algebra provides a more elegant

extension to overdetermined systems containing complex numbers.

Consider an overdetermined system of m  equations and n  unknowns, such that m n> :

a x a x a x b

a x a x a x b

a x a x a x b

n n

n n

m m mn n m

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

+ + + =
+ + + =

+ + + =

�

�

� �

�

(A1.1)

Expressing this system in matrix form:

Ax b= (A1.2)

where:

A =



















a a a

a a a

a a a

n

n

m m mn

11 12 1

21 22 2

1 2

�

�

� � �

�

(A1.3)

[ ]x = x x xn

T

1 2� (A1.4)

[ ]b = b b bm

T

1 2� (A1.5)
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The above equations describe a system where there are more equations than unknowns.  In

most cases no exact solution is possible, instead we must determine the solution vector Ax  to

be as "close" as possible in a mean square error sense to the target vector b .

The optimum solution will lie in the subspace spanned by the columns of A .  This subspace

can be viewed as all the possible linear combinations of the columns of A .  The optimum

solution, x , will be the point on the column space of A  that is closest to b .  This point occurs

where the error vector e Ax b= −  is orthogonal to the column space of A , and is known as

the projection of b  onto the subspace.  This situation is illustrated in Figure A1.1.

b

A x

e

C o lu m n sp ace o f A

C losest po in t in  subspace to  b

Figure A1.1: Orthogonal Projection of b  onto Column Space of A

Thus for any overdetermined system Ax b=  the best solution b , in a least squares sense is

when e is orthogonal to Ax :

e AxT = 0 (A1.6)

( )b Ax Ax− =T 0 (A1.7)

which gives a solution vector:

( )x A A A b=
−T T1

(A1.8)

which in effect chooses x  to minimise e
2
.
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A1.2 Extension of Orthogonal Projection to Complex Numbers

In real linear algebra we define the length of a vector:

x x xT2 = (A1.9)

There is a close geometric relationship between the length of a vector and it's inner product.

To maintain this relationship for complex numbers, the first vector in the inner product is

usually conjugated [45]:

x x xH2 = (A1.10)

where x  is now complex and:

x xH T= (A1.11)

The same rules can be applied to the inner product of two different complex vectors:

a b a bH, = (A1.12)

This definition of the length of complex vectors enables least squares problems involving

complex numbers to be solved using orthogonal projection in a more meaningful way than

techniques involving calculus.

Consider the least squares fit applied to lines in K  dimensional complex space, defined by the

cost function:

( ) ( )E S k GW k
k

K

= −
=

∑ 2

1

(A1.13)

Expressed in vector form:

E G= −s w 2 (A1.14)

where s and w  are complex K  element column vectors:

( ) ( ) ( )[ ]sT S S S K= 1 2 � (A1.15)
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( ) ( ) ( )[ ]wT W W W L= 1 2 � (A1.16)

and G  is a complex constant.  The problem is illustrated graphically for the two dimensional

real case in Figure A1.2

es

w

G w

Figure A1.2: Orthogonal Projection of s onto w

Note that this case is similar to that presented in section A1.1, except that in this case

e G2 2= −s w  is minimised by adjusting a single complex coefficient G .  In this case the

column space of the system Gw  is the single column or K  dimensional line w .

The optimum solution occurs when eT  is orthogonal to Gw :

e wTG = 0 (A1.17)

G
H

H
= s w

w w
(A1.18)
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Appendix B

Demonstration Speech Files

Speech files that demonstrate the various algorithms presented in this thesis are available via

the internet.  The page:

http://www.itr.unisa.edu.au/scrc/speech/index.html

contains instructions on how to obtain and listen to the speech files.  The files available are

summarised in the file demo.txt, which is listed below.

DEMO FILES FOR THESIS
=====================
David Rowe, 17/3/97

The files listed below demonstrate the techniques developed for the
thesis.  They are organised into a suggested listening order.  The source
file hts.wav contains 8 sentences, (4 speakers, 2 sentences each).

It is recommended that the files be broken up into smaller files for the
purpose of comparative listening.  For example, when comparing two files,
just listen to one 3-second interval, such as the first 3 seconds of hts.wav
and htsuq.wav, rather than the entire 24 second file.

Chapter 5 - Generic Sinusoidal Coder
---------

hts.wav         original
htsuq.wav       baseline unquantised generic coder as developed in Ch5.
htsa.wav        spectral magnitude modeling using RMS average method
htsa1.wav       spectral magnitude modeling using sampling method.

Chapter 6 - Parametric Phase Models
---------

hts.wav         original
htsuq.wav       baseline unquantised generic coder as developed in Ch5.
htsp1.wav  A by S phase model
htsp2.wav  Truncated (5 coefficients) DCT phase model
htsp3.wav  K=4 Weighted Polynomial phase model
htsv.wav  IS54 VSELP provided for comparison

mmt1.wav        Original truck noise corrupted speech
mmt1.wav  Baseline coder
mmt1p1.wav  A by S phase model - note background noise cf mmt1.wav
mmt1p3.wav  Polynomial phase model - note background noise cf mmt1.wav
mmt1v.wav       IS54 VSELP for comparison

Chapter 7 - Quantisation
---------

hts.wav         original
htsuq.wav       baseline unquantised generic coder as developed in Ch5.
htsx.wav  where x = a,b,...,g see table 7.3.  Coder in various stages

 of quantisation (Ch7)
htsv.wav  IS54 VSELP provided for comparison
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Appendix C

Informal Subjective Testing Methodology

Throughout the research described in this thesis, informal subjective tests (defined and

discussed in section 3.9) have been used to evaluate the various algorithms.  The methodology

used was to carefully listen to the decoded speech from the algorithm under test using files

from a relatively small test database.  Although small, the database includes a range of different

speakers, listed in Table C.1.

File Description Length (seconds)

hts.spc 2 Australian male, 2 Australian female, 2

sentences each

24

spkdat1.spc 25 British male and female speakers, 1 sentence

each

52

r1.spc BBC1 radio news, 3 speakers, swift speaking 120

Total 196

Table C.1: Informal Subjective Testing Database

Evaluations of the algorithm under test were made on a comparative basis, for example the

original (uncoded) speech was compared to the unquantised sinusoidal coder speech in

Chapter 5.  Comparisons were made on short (approximately 3 second) segments at a time, for

example the first sentence of hts.spc would be compared using the algorithm under test and the

reference condition for that test.  The subjective evaluations were made by the author using a

“sound blaster” PC based replay system with both headphones and hi-fi speakers.

Usually, results were evident by listening to just a few utterances, in most cases the results

were similar across the entire test database.  When the subjective quality of the two utterances

was not clearly different, a result of no difference was noted.


