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Summary

Harmonic sinusoidal coders represent the speech signal as a sum of sinusidatalsach
oscillator having an independent magnitude and phase. The frequenesh afsidator are
an integer multiple (harmonic) of the fundamental frequency. When the model parameters
(amplitudes, phases, and fundamental frequency) are updated everyl0-30 ms, high qualit

speech can be produced.

This thesis presents several speech coding techniques for harmonic sinusoidal coder:
Introductory chapters describe time and frequency domain speech coding, with specia
discussion and comparsion of CELP and sinusoidal algorithms. Several major contributions
then follow. Demonstrations of the algorithms developed for this thesis are available in the

form of speech files available via the internet.

A (fundamental frequency) pitch estimation algorithm based on a square law non-linearity is
presented, known as Non-Linear Pitch (NLP). The algorithm has moderate computationa
complexity, low algorithmic delay (small buffering requirements), and robustness to gross pitch
errors (halving and doubling). The algorithm employs a minimum number of experimentally

derived constants.

A generic harmonic sinusoidal coder is presented. This coder has been implemented using
range of techniques from existing sinusoidal and Multi-Band Excitation (MBE) coders. In

addition, new techniques are presented for the analysis, spectral magnitude modeling an
synthesis stages. The unquantised coder produces output speech of very high quality, in son

cases almost indistinguishable from the original speech signal.

Three parametric models for the compact representation of the harmonic phases are describe
A phase model for voiced speech that consists of a minimum phase LPC synthesis filtel
cascaded with an all pass filter is proposed, and three candidate systems are then develop
that implement this model. These models are evaluated using objective and informal subjectiv
methods, and found to produce speech quality comparable to VSELP in clean speecl

conditions.
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Finally, the thesis contributions are combined to produce a fully quantised coder. The
guantised coder is based on the generic sinusoidal coder developed in this thesis, with th
magnitudes modeled using LSP quantised LPC parameters. The sinusoidal phases a
represented using the analysis by synthesis phase model developed in this thesis. The ful
guantised coder produces communications quality speech at 8.3 kbit/s. The performance ¢
the coder is analysed and discussed using objective and subjective techniques. Finall

suggestions for further work are provided.
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1. Introduction

Speech coding deals with the problem of reducing the bit rate required for a speech
representation while preserving the quality of speech reconstructed from that representatio
[1]. One motivation for speech coding is to allow speech communication over power or
bandwidth limited channels. Such channels exist in communications systems employing digita
radio, for example mobile services where power (due to portability constraints) and in

particular spectrum is limited.

Recent interest in speech coding is motivated by the introduction of fully digital
telecommunications services designed to carry speech signals. These incligesyatems

using mobile terminals such as Inmarsat-M [12], and second generation terrestrial mobile
systems such as GSM [13][14]. Apart from these systems, proposed uses for speech codir
are future micro cellular mobile systems based on Code Division Multiple Access (CDMA)

[15], and multimedia applications where efficient storage of speech information is required.

An important parameter of a speech coding system is the quality of the reconstructed speecl
This can be used to describe the system, and the types of applications it might be suitable fo
Table 1.1 is a summary of current systems used to code speech. Note that these systems
designed to code speech signals only; other coding systems exist that can code any audio sigt

[9], however these are beyond the scope of this thesis and will not be considered further.

This thesis deals with communications quality speech coding. Communications quality speect
is defined as highly intelligible but with no&able distortion [1]. However the quality of the

reconstructed speech is such that different speakers using the system can be identified, unlil
synthetic quality systems where all speakers sound similar due to the large amounts o
distortion present. An example of communications quality speech is the existing analogue

cellular system, and many non-digital Public Switched Telephone Networks (PSTN).

1.1 Speech Coding Overview

In practice, speech coding is performed by first sampling analogue speech signals at a samplir

rate and resolution sufficient to preserve the desired quality. Commonly, 8 kHz sampling rate

and 12-16 bit linear PCM is used to sample communications quality speech. Before sampling

the speech is usually passed through an analogue anti-aliasing filter with a pass band of 30(
1
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3300 Hz. The speech is then processed using Digital Signal Processing (DSP) techniques 1
extract a compact representation in the form of a small number of bits that are then sent ove
the communications channel. The channel may be imperfect and can introduce errors in sorr
cases. At the decoder the received bits are used to reconstruct the speech signal, which is th
converted back to an analogue signal using a digital to analogue converter and reconstructio

filter. Figure 1.1 illustrates the process.

Quality Audio Distortion Bit Rate Typical
Bandwidth (Hz) (kbit/s) Application
Commentary 50 - 7000 Imperceptible 16 - 128 Video
to Slight Telephone
Toll 300 - 3300 Imperceptible] 8 -64 Network
to Slight Telephony
Communicationg 300 - 3300 Perceptible 2.4-16 Mobile
Comms.
Synthetic 300 - 3300 Mechanical| 0.8 - 2400 | Secure Defen¢e
Sounding Commes.

Table 1.1: Summary of Speech Coding Systems

Several different techniques are currently used for speech coding [1][61]. Parametric or mode
based coders assume a speech production model and extract parameters from the speech si
that describe that model, updating the model parameters periodically as the characteristics ¢
the speech signal change. Waveform coders assume no model, but attempiise rtfie

error between the original and reconstructed speech waveforms. Many low bit rate
communications quality speech coders use a combination of parametric and waveforn

matching techniques, and are thus known as hybrid coders.

The signal processing techniques used for speech coding may be based on time or frequen

domain processing. The speech signal is often buffered into frames of short blocks of sample:
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typically 20 ms long. This allows the coding techniques to exploit redundancies across the

frame to improve coding efficiency, at the expense of introduced delay.

\
) | — AD Speech
/ REEWCN Encoder
Speech D/A — >
Decoder e (
\

Figure 1.1: Speech Coding Model

1.2 Current Speech Coding Issues

From the author’s experience in the speech coding field, the following major issues in speecl
coding have been identified. Many authors have considered a subset of the issues below, and
is conceded that the issues are well known in practice, however no equivalent statement he

been encountered by the author.

1.2.1 Speech Quality

An important speech coding consideration is speech quality versus bit rate. A superior speec
coding algorithm will produce better qualityegch at a given bit rate than an inferior
algorithm. How to determine the speech quality of a given algorithnil is statter of some
debate [53][61]. The aim of most speech coding research is to lower the bit rate required for ¢

given level of speech quality.
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1.2.2 Computational Complexity

Lowering the bit rate while maintaining quality is often achieved at the expense of increased
complexity. A complex algorithm requires powerful DSP hardware that is expensive and
power hungry. Until the late 1980's, many speech coding algorithms were not implementable
in real time due to the lack of sufficiently powerful real time DSP hardware. Powerful DSP
chips now exist, however many existing algorithms push their capabilities to the limit [64].

Future algorithms are expected to demand more powerful DSP devices.

DSP hardware consumes significant amounts of power due to the high clock rates requirec
(typically 50 MHz). This is a concern for services requiring speech coding for hand held or
portable terminals. The reduction in complexity of speech coding algorithms would enable
lower power consumption through the use of less powerful DSP hardware. Less powerful

DSP hardware would also reduce cost.

Thus the search for computationally efficient algorithms is an important research activity; to

reduce DSP hardware requirements, power consumption, and cost of speech coding hardwar:

1.2.3 Robustness to Channel Errors

Speech coding is often used in channels that are plowesd and thus subject to bit errors

with random or bursty distributions [62]. In these cases, it is necessary that the speech codin
algorithm be robust to the error conditions likely to be encountered in the prescribed operating
conditions. This may be achieved in several ways. The first is by adding Forward Error
Correction (FEC) to the encoded speech to protect against bit errors introduced during
transmission. This can be used to improve the robustness of any speech coding algorithm b
carries the penalty of extra bandwidth due to the added FEC information that must be

transmitted.

The second method to provide robust coded speech transmission is to use algorithms wit
inherent robustness. Certain speech coding algorithms are more robust to bit errors tha
others [63], and are thus preferred for use with noisy channels. Other algorithms may perforn
poorly in noisy channels, or break down completely at even moderate bit error rates. The

audible effects of this may be poor speech quality, annoying, or even physically painful noises
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being emitted from the speech decoder [65]. The investigation and improvement of algorithms

robust to bit errors is therefore an important research issue.

1.2.4 Robustness to Acoustic Background Noise

Background noise presents a problem to many speech coders [66]. One of the reasons tr
speech can be coded at low bit rates is through the use of model based or hybrid technique
that exploit the redundancy of the speech signal. The assumptions these models make fc
speech coders are not necessarily true for other audio signals such as single sinusoids

background noise. These coders may reproduce speech sounds faithfully but distort or corruj
background noise in an annoying fashion. Another effect is that the signal processing
techniques used to extract model parameters may fail when speech corrupted by high levels «
background noise is coded. For example, many of the very low rate, synthetic quality
vocoders used by the military fail in moving vehicles or helicopters due to the presence of

periodic background noise.

1.2.5 Coding Delay

Many speech coders buffer speech into frames. For communications quality speech coders
frame length of 20-30 ms is common. This introduces delay into the system, the end to en
delay (total delay of the encoding/decoding process) of the speech coder being a multiple o
the frame length due to processing and transmission delays. Total coding delays of 80-120 m
are common. Delay can also be introduced by specific features of the speech coding algorithn
Several coding algorithms exist that examine speech information in future frames before coding

information in the current frame, this is implemented in a causal system by introducing delay.

Delay becomes a problem for two reasons. Firstly, speech coders are often interfaced to tf
PSTN via four to two wire converters or "hybrids"”. A side effect of using these devices is that
a proportion of the output signal from the codec is fed back into the input of the codec. Due
to coding delays, this introduces echo. This is extremely disconcerting to the user, who hear
one or more echoes of his own voice returned at multiples of 80-120 ms. The second problen
with delay is when the coding delay is coupled with long transmission delays such as those

encountered with transmission via satellites in geosynchronous 206itns round trip). In
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this case a total delay of over 300 ms may be encountered, making actual conversatio

difficult. Thus minimisation of coding delay is an important research aim.

1.3 Contributions

This section describes the major and minor contributions presented in this thesis. The majo

contributions presented in this thesis are:

1.

A pitch estimation algorithm based on a square law non-linearity is presented in chapter 4
known as Non-Linear Pitch (NLP). The algorithm has moderate computational complexity,
low algorithmic delay (small buffering requirements), and robustness to gross pitch errors
(halving and doubling). The algorithm employs a minimum number of experimentally

derived constants.

A generic harmonic sinusoidal coder (chapter 5). This coder has been implemented using
range of techniques from existing sinusoidal and Multi-Band Excitation (MBE) coders. In

addition, new techniques are presented for the analysis, spectral magnitude modelling an
synthesis stages. The unquantised coder produces output speech of very high quality, |

some cases almost indistinguishable from the original speech signal.

In chapter 6, several parametric models for the compact representation of the harmoni
phases are described. A phase model for voiced speech that consists of a minimum pha:
LPC synthesis filter cascaded with an all pass filter is proposed, and three candidate
systems are then developed that implement this model. These models are evaluated usit
objective and informal subjective methods, and found to produce speech quality

comparable to VSELP in clean speech conditions.

Several minor contributions are also presented:

1.

2.

A definition of current low rate speech coding issues (section 1.2).

A gquantitative description of the procedure used to determine the excitation for Code

Excited Linear Prediction (CELP) coders (section 2.5.3).
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3. A derivation of expressions to obtain the harmonic sinusoidal model parameters for both

sinusoidal and Multi-Band Excitation (MBE) coders (section 3.5).

4. A qualitative description of the problems encountered with existing sinusoidal and Multi-
Band Excitation (MBE) analysis procedures due to the breakdown of assumptions of

short-term stationarity (section 3.7).

5. Afully quantised 8.3 kbit/s sinusoidal coder that combines the pitch estimation, sinusoidal

coding, and phase modelling techniques developed in this thesis.

1.4 Thesis Outline

Chapters 2 and 3 provide the conceptual and mathematical background information necessa
to describe the contributions presented in subsequent chapters. Chapter 2 deals with bas
speech coding principals such as the nature of speech waveforms and then proceeds
introduce several key speech coding concepts and analysis techniques. It concludes with

presentation of several popular time domain coding algorithms.

Chapter 3 presents background information on low bit rate frequency domain coding, which
forms the basis for the major contributions of this thesis. The sinusoidal coder is introduced,
and analysis techniques for the sinusoidal model parameters are presented in mathematic
form. Several problems with the sinusoidal coder are discussed. Finally a qualitative

comparison between CELP and sinusoidal coding is presented.

Chapter 4 presents a new pitch estimation algorithm known as Non Linear Pitch (NLP). This
algorithm uses the harmonic distortion introduced by a square law non-linearity to determine
the pitch period of speech signals. The algorithm contains three stages, a basic pitch extractc
a post processor, and a pitch refinement stage. The algorithm has been tested using objecti
and subjective methods and has been found to produce good results when used with tt

generic sinusoidal coder presented in chapter 5.

Chapter 5 presents a generic sinusoidal coder, which is a development of existing sinusoid:
coders. This unquantised coder is computationally simple, and produces speech of very hig

quality, in some cases almost indistinguishable from the original speech signal. Analysis anc
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synthesis techniques for this coder are presented, as well as a method for modelling th

sinusoidal magnitudes using linear predictive techniques.

Parametric methods for modelling the sinusoidal phases of voietis@re presented in
chapter 6. Three separate phase modelling techniques are described and contessted to

other in terms of subjective and objective results.

The various techniques presented in this thesis are combined in chapter 7 in the form of a full
guantised communications quality speech coder operating at 8.3 kbit/s. This harmonic
sinusoidal coder employs one of the phase models presented in chapter 6, and the amplitut
modelling discussed in chapter 5. Quantisation of these parameters is discussed and objecti

and informal subjective results presented.

Chapter 8 summarises the new work presented in this thesis, and provides several areas
interest for further work. Appendix B provides instructions on obtaining speech files via the

internet which demonstrate the techniques developed for this thesis.



2. Speech Coding Techniques

The purpose of this chapter is to introduce and discuss basic speech coding principals an
several complete time domain coding algorithms. This information, together with the
background information on frequency domain coding presented in the next chapter provide:

the conceptual and mathematical framework for the rest of this thesis.

Section 2.1 introduces the source-filter model, a speech production model used as the basis
many model based and hybrid speech coding algorithms. Section 2.2 discusses several k
features of speech signals that are often exploited to reduce the bit rate. In section 2.3 th
linear predictive model of speech production is introduced, and the methods for extracting the
linear predictive model parameters discussed. Pitch estimation is the topic of section 2.4, th
problems with this challenging area of speech research are discussed and a typical algorith
presented. Section 2.5 introduces several complete time domain coding algorithms, including
derivation of the CELP codebook searching procedure. Finally, section 2.6 discusses the Lin

Spectrum Pair (LSP) representation for quantising and transmission of LPC coefficients.

2.1 Source-Filter Model

Speech is a time varying acoustic pressure wave. For the purposes of analysis and coding,
can be converted to electrical form and sampled. Speech signals are non-stationary; th
characteristics of speech evolve over time. As the characteristics vary slowly, speech signa
can be approximated as stationary over short periods (in the order of a few tens ol

milliseconds) [1].

source —» filter —»vﬂ/\/\/\/{V\j\/vW\/

Figure 2.1: Source-Filter Model of Speech Production

A convenient model of speech production is seeirce-filter model (Figure 2.1) [1][2][3].
Speech production is modelled as a filtering operation, where a sound source excites a filte
formed by the vocal tract. As the speech signal is non-stationary, the characteristics of the

source and filter are time varying.
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A simplified view of speech is that it consists of two types of sounds, voiced (vowels) and

unvoiced (consonants). Voiced sounds are produced by air from the lungs being interrupte
periodically by the vocal folds at the base of the vocal tract. Unvoiced sounds are produced b
air from the lungs passing through constrictions in the vocal tract, and are usually of lower
energy. The filtering operation performed by the speech organs in the vocal tract enhance
some frequencies and attenuates others, depending on the position of the articulators. Tt
articulators (vocal folds (cords), tongue, lips, teeth, velum, jaw) are moved by voluntary
muscle control to form different sounds [1]. Physiologically the source and filter are not

separate. However for analysis purposes this is a useful assumption.

For the purposes of speech coding, accurate limgdef the vocal tract is important in
retaining the intelligibility of coded s®ch, while effective modieg of the excitation source

produces natural sounding speech.

2.2 Characteristics of Speech Signals

Figure 2.2 is a time and frequency domain plot of a segmerdicddmale speech sampled at
8 kHz. The segment il =256 samples long, and the speech was bandpass filtered between
300 Hz and 3300 Hz before sampling.

Note the periodicity in the time domain. The waveform in this example has a period of
approximatelyP =90 samples wher® is known as theitch period(units samples). The
pitch period (or simply pitch) corresponds to the time between successive openings of the

vocal folds and is related to the fundamental frequéryunits Hz) by:
F
5 (2.1)

whereF, is the sampling frequency in Hz.

10
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Figure 2.2: Male Speech Segment: (a) Time Domain, and (b) Frequency Domain

In sampled systemB0 is often expressed in normalised radianegae/here:

W, = B (2.2)
In human speeck0 ranges from about 50-500 Hz, 50-160 Hz for males and 100-500 Hz for
females and children. As the excitation signal for this example is periodic, the magnitude
spectrum is also periodic and consists of harmonics of the fundamental frequency. The
amplitude of the harmonic series is modulated by a slowly changing function of frequency.
This is the filtering effect of the vocal tract. Note several peaks in the spectrum, at around

400, 1200 and 2300 Hz. These peaks correspond to resonances in the vocal tract known

11
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formants The number, frequency and bandwidth of the formants are time varying and change

as we articulate sounds.

2.3 Linear Predictive Coding

The source-filter model was introduced in the previous section as a convenient way to mode
speech production. To code speech at low bit rates we require a compact and accural
representation of the excitation source and vocal tract filter. A popular method of modelling
the vocal tract filtering is Linear Predictive Coding (LPC) [6]. In its most common form, this

technique uses a small number of parameters in the form of an all pole filter to model the voca
tract. Parameters for a segment of speech are derived by analysing the original speech sigr

using the procedure described below.

X(2) —»  H{ —> §)

Figure 2.3: Source-Filter Model mdomain

To derive the linear predictive model we consider the source-filter model inrdbmain,

illustrated in Figure 2.3. An excitation sourOé(z) drives a vocal tract fiteH(z), to

generate synthetic spee&i? (the ztransform of time domain synthetic speeﬁﬁm)) such

that:

SP=X3HY} (2.3)

whereH(2) is defined as an all-pole filter of the form [1][2]:

G
A(2)

H(Z) (2.4)

= G =
1—£1akz‘k

Where{ak} for k=1,2,...,p is a set ofp linear prediction coefficients, that characterise the

filter's frequency response afl is a scalar gain factor. Note that other definitionch(t)

exist [3][6], that have a positive sign in the denominator of (2.4):

12
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HZ)=—— (2.5)

This yields an equivilant model except for the sign{aJ}. The LPC model of the form

presented in (2.4) is used in this thesis. The number of poles in the all pole filter is equal to the
LPC orderp.

Our task is to chooséak} andG such thatS( 2 is as close as possible to the original speech

signal S(z). This can be achieved as follows. In the ideal case, weSgBho be identical to

S(z), thus we substitut&(z) for § 2 and re-arrange (2.3) to obtain:

x()= 3 A % (2.6)
G
Taking the inverse-transform:
=5 H0-Y agr i @7

If H(2)is a good approximation o8(z) then the energy in the signa(n) will be minimised

where the total energy is given by:

53 H-> agrw il 28)

Thus {ak} can be found by equating (2.8) to zero and finding the partial derivatives with

respect tog fori=1,2,...p. From this procedure we obtgnequations inp unknowns:

is(nin—) Z@Zén— kEr )0, #12...,p (2.9)

n=-o

which can be expressed in terms of autocorrelation var{ies
p
-ZaKF(i—k)=0, i=12,..,p (2.10)
=1

13
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where:

RY=3 ()¢ @.1)

This is known as theautocorrelation method of deriving the linear prediction coefficients.

Several other techniques exist for obtain{mj}, such as the covariance [1] and Burg [2]

methods. The autocorrelation method is popular due to an efficient method of solving (2.10)

known as the Levinson-Durbin algorithm [6].

To deriveG, we need to define the excitation sigrPé.(z) in (2.3). Taking the inverse

transform of (2.3):
§(n) = GKMZ RN (2.12)

where §(n) and x(n) are the inverse z-transforms $f2 and X(z). Now consider the case

[6] where the excitation signat(n) is a unit impulse, andﬁ(n) is the impulse response of

(2.12):
h(n) = G5(0) + > at(n§ (2.13)

By multiplying both sides byﬁ(n—i) and summing over all n we obtain two expressions

relating R(i), defined as the autocorrelation i) :

ﬁ(i)=£@f<i— K, li>1 (2.14)
R0)=G +Z aKi- 8 (2.15)

It is reasonable to choo&to minimise the difference in the energysgh) and h(n). Thus

the total energy irs(n) and h(n) must be equal:

14
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R(0) = R0) (2.16)
Due to (2.16) and the similarity between (2.14) and (2.10), we can conclude [6] that:
R()=R), i=0L...,p (2.17)

Thus (2.15) can be manipulated to obt@ifor the unit impulse case:

G=\/R(o)—équ{i—@ (2.18)

In practice the original speech sigrsiém) is windowed so speech segments (typically 16-30ms
long) are used to derivéak}. This limits the autocorrelation summation to a windowNof

speech samples, wheke is the frame length. Due to the non-stationary nature of speech, the
LPC model must be updated regularly by moving the window forward in time. Figure 2.4
shows an example of LPC modelling applied to theesh segment presented previously in

Figure 2.2. The dashed line is the magnitude spectrum of the original speech segment. Tr

solid line represents the magnitude spectrum ofpthd.0, LPC mode'H (e'j‘"}.
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Figure 2.4: LPC Modelling of Male $pch

Linear predictive coding effectively models the vocal tract frequency response. In the example
the LPC magnitude spectrum follows the slowly varying amplitude componespeatral

envelope Note that the LPC envelope falls just below the peaks of the speech spectra in high

15
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energy areas (formants), and just above the peaks in low energy areas (anti-formants). Tr
LPC model fits the peaks better than the valleys due to the greater contribution of the peaks t

the minimum Mean Square Error (MSE) criterion [1].

As the LPC model ordep increases, the LPC model provides a better fit to the speech

spectrum. Asp - o the fit becomes exact [6] and the ragged excitation information is

matched as well as the spectral envelope. However as the model order increases the number
parameters requiring transmission and hence the bit rate increases, thus the model order is
trade off between model accuracy and economy of bit rate. LPC is normally used only to
represent the vocal tract filtering. For this purpose enough poles must be present in the mod
to represent the number of formants, plus a few poles extra to approximate the effects of zerc

in the vocal tract. Model orders of 10-16 are common for speech coding.

The all-pole filter1/A(z) is known as theynthesidilter. If driven with a suitable excitation

signal x(n), it can be used to synthesise artificial or coded spé@gh From (2.7):

§(n) = >(f)+£1 a$rm k (2.19)

The all-zero fiter A(z) is defined as thanalysisfilter. It can be used to remove the vocal

tract information from a speech signal, leavingrémdual r(n) defined as:

r(”):S(n)-élakin- ) (2.20)

The residual is effectively the "ideal" excitation signal that is driving the LPC model of the

vocal tract filter. Accurate modelling of this signal results in natural soundeegisp

2.4 Pitch Estimation

Pitch or FO estimation is one of the most difficult problems in speech analysis . It is also one
of the most important, as the ear is more sensitive to change3 than any other speech

parameter by an order of magnitude [4]. The basic problem of indentifying the fundamental

16
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frequency of a harmonic series may appear straight forward, however it is complicated by

several factors [4][35]:

1. The common assumption of speech being stationary for short periods (10-30ms) ofter
breaks down. For example in transition regions the speech characteristics (including pitct

period) can change rapidly (e.g. Figure 2.5).

2. Effect of vocal tract filtering. Some harmonics will be amplified, other attenuated. In
particular, the first formant (F1) gives rise to a large amount of periodic energy that is not
related toFO.

3. Band limiting and phase distortion. Communications qualieap is bandmited to 300-
3300 Hz, thus the first few harmonics for male speakers (including the fundamental) are

often lost.
4. Wide range (50-500 Hz) of possilii® frequencies.
5. Simultaneous presence of voiced and unvoiced energy (mixed excitation).

6. Presence of ambient environmental noise, e.g. background noise encountered in a moving

vehicle.

A pitch estimator is often comprised of 3 functional elemenpsegrocessarabasic FO

extracter and gpost-processofFigure 2.6).

The pre-processor may consist of linear and/or non-linear processing. The pre-processc
attempts to make the speech signal more suitable for the next stage of processing. Fc
example, it may consist of inverse LPC filtering that removes the vocal tract information from

the speech signal, leaving a spectrally "flat" signal.

The basic pitch extracter uses time or frequency domain techniques to provide one or mor
estimates of the pitch perio®, (units samples), or fundamental frequenEy) (units Hz).

Many basic extracters use a short term transform applied to a frame of speech sample
containing several pitch periods. The transformed data is characterised by maxima or minime

that correspond to possible pitch estimates.

17
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Figure 2.5: Breakdown of Short-Term Stationarity: Speech Signal in Transition Region

Speech — Pre-Processor  —» Basic Pitch —» Post-Processor  —»F0
Extractor

Figure 2.6: Pitch Estimator Block Diagram

The post processor evaluates the possible pitch estimates, and determines the most likely pit
value. The post processor may "smooth” the pitch contour by comparing the current pitch
estimate to past and future estimates and acting to remove any discontinuities caused &

temporary failure of the basic extractor.

The windowed autocorrelation function is commonly used as a basic pitch extractor [36]:

[

R(k)= Z s(hw(n)s(h-kw(n-k)k=P_ ,...,P._ (2.21)

n=-o

where P, =F/FO__ andP_ =F/FO_. . A range of pitch values from 20-160 samples

corresponding to a0 range of 50-400 Hz is common. The speech samples are multiplied by
an N sample tapered data Window(n) to limit the range of the summation. Windows of 20-
40ms (N =160- 320 samples at 8 kHz sampling rate) are common. A Hanning window is a

common choice fomw(n):
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w(n)=05-05c043°™ th=04,...,N-1 (2.22)
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Figure 2.7: Male speech segment: (a) Time Domain, and (b) Autocorrelation Function

Figure 2.7 is an example of the autocorrelation function of a segment of male speech. Visue

examination of Figure 2.7 (a) indicates a pitch period of alBat’0 samples. Note the

corresponding peak in Figure 2.7 (b)kat 70 samples.
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2.5 Time Domain Coding Algorithms

LPC provides an efficient way of coding the vocal tract filter information. The next stage in

the coding process is to determine an efficient method of coding the excitation for this filter.

2.5.1 LPC Vocoder

The synthesiser (decoder) for a simple LPC vocoder is illustrated in Figure 2e&chSp
synthesised by exciting an LPC synthesis filter with either a periodic (voiced) or white noise
(unvoiced) source. The periodic source consists of impulses spaced by the pitch period. Bot

the periodic and noise sources are scaled by an appropriate gain.

The speech encoder determines the LPC filter coefficients, the pitch, and a single
voiced/unvoiced decision for each frame. These parameters are quantised and sent to tt
decoder. This type of vocoder is capable of sending intelligableckpat bit rates of 2400

bit/s and below.

The main drawback is that the synthesised speech has a mechanical quality, due to the sim
excitation model. The LPC vocoder assumes speech to be either voiced or unvoiced. I
practice speech often contains both voiced and unvoiced energy, which cannot be adequate

modelled by this coder.

The LPC vocoder requires accurate estimation of the excitation model parameters, such a
pitch and the voiced/unvoiced decision for each frame. This is a difficult task, which is futher

complicated when acoustic background noise is present.
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Figure 2.8: LPC Vocoder
2.5.2 Multipulse-Excited LPC

Multipulse coders [26] model the residua(n), using a series of pulses. The positions and

amplitudes of the pulses are chosen to minimise the error between the original and synthesise
speech over the current analysis frame (typically 5ms long). Figurdli&8ates the

multipulse analysis loop.

To determine a pulse location and amplitude the excitation generator produces an excitatio
sequence for each possible pulse location in the analysis frame. These candidate excitations &
passed through the synthesis filter, and the MSE between the synthesised and original spee
measured. The optimum pulse amplitude is obtained by minimising the M&Ehatandidate

pulse position. The candidate position and amplitude that minimises the MSE is chosen, an

the procedure is repeated for the desired number of pulses.
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Figure 2.9: Multipulse-Excitation Encoder

This technique is a form adnalysis by synthesisr closed-loopcoding, as the canditate

excitation signals are synthesised as part of the analysis procedure.

The pulse locations and amplitudes for successive pulses are found iteratively to reduce
complexity. After the optimum position and amplitude of puisénas been chosen, the
synthesised speech from this pulse is subtracted from the original speech. The result of th

subtraction is then used as the original speech for determingrptilse

Multipulse-Excitation requires no pitch or voicing detectors, which tends to make it more

robust to different speakers and acoustic background noise conditions than the LPC vocoder.

Multipulse coders can produce communications quality speech at bit rates of around 10 kbit/s
Typically around 4-8 pulses per 5ms analysis frame are required for communications quality
speech. At bit rates below 10 kbit/s, not enough bits are available for the number of pulse:

required to produce an adequate excitation signal.

A low complexity development of Multipulse-Excitation is Regular Pulse Excitation (RPE)
[10]. This coder only optimises the position of the first pulseaich analysis frame, the rest
are regularly spaced. The amplitudes of each pulse are individually chosenngseanihe

MSE in a similar fashion to multipulse coders.
2.5.3 Code Excited Linear Prediction

One of the most popular methods for communications quality speech coding is Code Excitec
Linear Prediction (CELP) [11]. This coder uses the sum of one or more weckelnookso

guantise the excitation. An important feature of this coder is that the vector quantisers or
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codebooks are searched usingaaalysis by synthesmocedure. CELP is capable of coding
communications quality speech at bit rates of 4-8kbit/s. To discuss the operation of CELP it is
useful to first describe the CELP decoder (Figure 2.10).

i Pitch Synthesis Filter ~ {a«}

a

¢ Synthesised Spee
Stochastic . ;
Codebook U VA > WM

v

Figure 2.10: CELP Decoder

In Figure 2.10 astochastic codebookxcites the cascade of mtch synthesisand LPC

synthesis filter. The stochastic codebook consistl ,o¥ectors, each vector containimdy,

samples. Each vector is populated with a fixed sequence of randomly distributed numbers
each vector (codebook entry) has a different sequence. The stochastic codebook contributio

is defined by the entry)(and the gaind).

The pitch synthesis filter models the long term periodicity present in the excitation signal
during voiced speech. This is acheived by rimdethe current excitation sample as a
weighted version of a previous excitation sample. The pitch synthesis filter contribution is

defined by the pitch delay or lag)( and the pitch gainf).

Both the stochastic codebook and pitch synthesis filter parameters are time varying. They ar

updated evergubframeof Ny samples, wherél. is usually a submultiple of the LPC frame

size,N (e.g.N=4N.). In between updates the excitation parameters remain fixed.

Thus the LPC synthesis filter models the short term periodicity (vocal tract filtering), the pitch
synthesis filter models the long term periodicity (pitch structure), and the stochastic codebook

models the random component (remaining modelling errors and unvo@ach$p
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The pitch synthesis filter can be viewed asamlaptive codebookonsisting of N, (Nge
sample) vectors. Thus for each possible valle ofe have a codebook entry Nf. samples.
Note that adjacent entries (entryand L +1) are identical except for the first and last samples.

This representation of CELP is useful for explaining the methods used to determine the

excitation parameters and is illustrated in Figure 2.11

The adaptive codebook contents are time varying, and are updated every subframe from th
composite (sum of adaptive and stochastic) excitation. Due to this feature the adaptive
codebook tends to build up a good approximation of the ideal excitation waveform over time,

especially in continuous segments of voiced speech.

Stochastic
Codebook

i {av}

i »é i Synthesised Speec
Adaptive
Codebook X > A VMNVN\NVW\'
T— Subframe Delay¢——

Figure 2.11: CELP Decoder with Adaptive Codebook

L—»

The CELP encoder exhaustively searches the adaptive and stochastic codebooks to determi
the optimum excitation vectors and gains. The synthesis filter response to each possibl
excitation vector is determined. This is then compared to the target (original) speech vector ir
a mean-square error (MSE) sense. The parameters that represent the excitation that minimis

the MSE for the current subframe are transmitted to the decoder.

The two codebooks are usually searched sequentially. First, the optimum excitationlyector (
and gain @) for the adaptive codebook is determined. The stochastic codebookikainy (

gain (o) are then chosen. A simultaneous estimation of both adaptive and stochastic codeboo

24



Chapter 2 - Speech Coding Techniques

parameters is possible, however the large increase in complexity does not warrant the sligt

performance increase obtained.

An analytical formulation of the CELP codebook search procedure developed by the author is
now presented. The procedure is well known, and described qualitatively in many sources
However, a literature search by the author has found no equivilent analytical presentation o

the entire search procedure.

The composite excitation signa(n) can be described by:

x(n) =B (N +aX¥)(n, m0L2.., N.-1 (2.23)

where ng)(n) is then™ sample of adaptive codebook entryand x’(n) is then™ sample of

stochastic codebook entiy As the adaptive codebook consists of previous excitation

samples, (2.23) can be expressed as:

x(n)=Bx(n- D+a¥) (), m0L2.., N.-1 (2.24)

The aim of the analysis by synthesis codebook search is to choose the excitation paramete

{L,B,i,a} such that the Mean-Square Error (MSE), between the original speech and

synthesised speech for this subframe ismised:

Neoo—

e= S e(d= 5 ()= ) 2.25)

n=0

The synthesised speech is obtained from the LPC synthesiﬂ/fnt(el):

8(n)= x(n)+ Zilaké(n—k) (2.26)

As this is a causal Infinite Impulse Response (IIR) filter, it may be expressed as a convolutior

of the current and all prior input sampl&ék), k=-0o,...,n=1,n with the impulse response

of the synthesis filtteh(k) :
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3n)= 3 xlkhln-k) (2.27)

k=—00

Equation (2.27) can be expressed in terms of the response to the excitation signal before tt

current subframe, and from the current subframe:

n

§n)= 3 x(kh(n-k)+ > xkhin~k) (2.28)

k=—0c0 =

The first term of (2.28) is known as thero inputresponses,, (n) This is the component of

the synthesis filter response from the input samipéderethe start of the current subframe.
The zero input reponse can be obtained using the synthesis filter defined in (2.26) with

x(n)=0:
§,(n)= iakézi(n—k),n=0,1...,NSF (2.29)

The samples, (n) = §(n) for n=-p,- p+1,...,—1are the lasp synthesised speech samples of

the previous subframe. As (2.26) has an infinite impulse response these samples are non-zei

therefore the zero input response will be non-zero.

The second term of (2.28) is known as tleeo stateresponseézs(n), of the synthesis filter.

This part of the synthesis filter repsonse is due to input samples from the current subframe. |

can be obtained from (2.26) by setting the state variglés) =0 for n=-p,— p+1,...,-1,

and evaluating:
5.(n)= iakézs(n—k),n=0,1...,NSF (2.30)

Thezero stataesponse can also be obtained by directly computing the second term of (2.28).

The first term of (2.28) is the contribution to the current output sample from input samples
before the start of the current subframe. hasa function of the excitation parameters for

the currentsubframe{L, 8,i,a}. The second term of (2.28)a function of{L, 8,i,a}, this is

known as thetarget vector. We wish to choose the excitation parameters such that the
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synthesised speech closely matches the target. To isolate the target, we subtract the first ter

of (2.28) from the original speech for this subframe.

Re-formulating (2.25):
5.(n)) (2:31)

E - “jj«s(n)—éﬂ ()-.00) = (s0)-

The problem is now choosinb_,ﬁ,i,a} to minimiseE, the MSE between th@rget speech
ss(n) (original speech with zero input synthesis filter response removed),ég(mj).

Substituting (2.23) into the 2nd term of (2.28) we obtain an expression for the zero state

response of the synthesis filter for this subframe:

5,,(n)= BiXS)(kﬁ(n-k) +a2x§‘>(k)h<n—k> (2.32)

8,4(n)= A8 (n)+as?(n) (2.33)

where égL)(n) is the unit-gain, zero state response from the adaptive codebook excitation and

&0)(n) is the unit-gain, zero state response from the stochastic codebook excitation.

The excitation parameters for each codeb({dlk/},i,a} can be found sequentially, first

choosing{L, 8} to minimise:

(2.34)

then choosindi,a} to minimise:

EO = N:Zj((ss(n)—Béﬁ”(n))—aéﬁ‘)(n)) (2.35)

By finding the derivative of (2.34) with respect 8o and equating to zero, an expression for

the optimum gair8 and the resulting MSE may be obtained:
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p=_2 i (2.36)
5 )
eV = 3 S0P -85S sEY0) (2:37)
Similar results may be obtained fira} from (2.35):
S 0)- 00
q =" (2.38)

Ngp—1 2

> (&)

n=

Ngr-1

0= S (6 0)- MO -a 3 s 0)- R ) 239)

The codebooks are searched by determining the response to each excitation vector, the
determining the optimum gain. The resulting MSE for each codebook entry is determined anc
stored. After all codebook entries have been evaluated, the entry and corresponding gai

resulting in the minimum MSE is chosen.

A block diagram of the CELP encoder codebook searching procedure is presented in Figur
2.12. Only one codebook is drawn, as the search procedures are similar for both codebook
After removing the zero input response from the input speech vector, the codebook is
exhaustively searched to find the optimum excitation vector and gain. This is determined by
synthesising the response to each vector, then comparing it with the original speech on a MS

basis.
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Figure 2.12: CELP Encoder

Before the error minimisation block the error signal is passed through an error weighting filter.
This filter ensures that certain parts of the spectrum are given more importance, according to

perceptual criterion. The error weighting filter is of the form:

W(z)= Az) (2.40)

which tends to attenuate the error signal in the formants and enhance the error signal in th
anti-formant regions. Figure 2.13 is an example of an error weighting filter response with
y=0.9. The corresponding synthesis filter frequency response is the dashed line. The filterec
error signal is used to determine the MSE for the current codebook entry. Less emphasis i
placed on matching the speech signal in the formant regions than in the anti-formant regions
This can be interpreted perceptually in terms of the masking effect of the human ear. A poore
match of the signal in the formants will result in coding noise in this region. However, this
coding noise will benaskedby the relatively high signal energy in the formant. In the anti-
formant region, the signal level is low, thus any error signal will be highly audible to the
listener. Thus we weight the error measure to ensure a better match in the anti-forman

regions.
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Figure 2.13: Error Weighting Filter Response

In practice the effect of the error weighting filter can be combined with the synthesis filter to
simplify implementation. The codebook searching procedure defined above remains the same

except that a weighted synthesis filter impulse response is substituﬂe(@)‘or

2.6 Quantisation of LPC parameters using LSPs

Section 2.3 discussed the modeling of the vocal tract filter using LPC techniques, where a se

of linear prediction coefﬁcientﬁak} for k=12,...,p describes the vocal tract filter. To be

useful in low bit rate speech coding it is necessary to quantise and transmit the LPC
coefficients using a small number of bits. Direct quantisation of these LPC coefficients is
inappropriate due to their large dynamic range (8-10 bits/coefficient [6]). Also, there is no
direct way of ensuring synthesis filter stability, which is perceptually important to the
synthesised speech quality. Thus for transmission purposes, especially at low bit rates, othe
forms such as theine Spectral PairfLSP) frequencies [57] are used to represent the LPC

parameters.

The LSP coefficients represent the LPC model in the frequency domain, and lend themselves t
a robust and efficient quantisation of the LPC parameters [58]. The prediction filter is an all-

zero (analysis) filter, where the zeroes correspond to the poles of the all-pole (synthesis) filter.
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The LSP frequencies can be derived by decomposingptherder polynomiaIA(z), into

symmetric and anti-symmetric polynomid¥z) and Q(2):

P(2)= Au(2= A(3+ 2" K 2) (2.41)
Q2= A= A(2- 2"V K D) (2.42)

where:
A(2)=1+ i a zZ" (2.43)

An important property of the polynomials is that the roots appear in complex conjugate pairs

on the unit circle [57]. This is shown below whe?fz) and Q(z) are expressed in factored

form [57]:
P(2) =(1+ z‘l)ﬁ (1- 2coqw,_,) Z'+ Z°) (2.44)
Q(2)=(1- Z‘l)ﬁ (1- 2coqw,) Z'+ 2°) (2.45)

wherew,,_, and w,; are the LSP frequencies, found by evaluating the polynomials on the unit
circle.  Figure 2.14 illustrates possible root locations for even oRf@ and Q(2)

polynomials, where the roots at location O arare left out for simplicity.

Other characteristics of the LSP frequencies include being interlaced with each other, wher:
0<w,<w,<,...<w, <. The stabilty ofA(2) is preserved after quantisation Bfz) and
Q(z), as long as the zeroes of the LSP polynomials are on the unit circle and are interlaced

The separation of adjacent LSP frequencies is related to the bandwidth of spectral nulls ir
A(2) (or spectral peaks in the synthesis filléA(z)). A small separation indicates a narrow

bandwidth.
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Figure 2.14: Possible root locations for an even ordé(af and Q(z).

The LPC analysis filter A(2) , may be reconstructed using tR€z) and Q(2z) polynomials:

a(7= A2+ 43 (2.46)

2

Thus to transmit the LPC coefficients using LSPs, we first transform the LPC m{zjeto
P(z) and Q(2) polynomial form. We then solvB(z) and Q(2) for z=€“ to obtainp LSP
frequencies{a)i} . The LSP frequencies are then quantised and transmitted over the channel

At the receiver the quantised LSPs are then used to reconstruct an approxima%(ﬂ).of

Chapter 7 describes the use of LSPs to quantise the generic sinusoidal coder described in tt

thesis.
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3. Frequency Domain Coding Techniques

This chapter introduces the concepts involved in frequency domain speech coding, in contras
to the previous chapter which introduced general speech coding concepts and discussed seve
time domain coding algorithms. This information is used to generate a framework for the

thesis contributions presented in later chapters.

Section 3.1 introduces the concept of sinusoidal coding. In section 3.2, sinusoidal coding
techniques are extended to harmonic coding. Voicing models for sinusoidal coders are
introduced in section 3.3, where mixed excitation is discussed. Section 3.4 presents :
mathematical treatment for the estimation of harmonic sinusoidal model parameters, while
sections 3.5 and 3.6 discuss existing pitch and voicing estimation algorithms. Several problem
with sinusoidal coders are presented in section 3.7, while section 3.8 presents a comparison
time and frequency domain coding algorithms. Methods of measuring speech quality are

presented in section 3.9, and section 3.10 concludes the chapter.

3.1 Sinusoidal Coding

The previous chapter discussed coding algorithms that used time domain analysis to mode
speech in terms of the source-filter model. The object of these coding algorithms was ta
determine a suitable excitation sequence for the LPC synthesis filter. The concept of analysi
by synthesis was introduced, where the encoder synthesises the candidate excitation sequen

to determine the best excitation sequence in a weighted minimum MSE sense.

It is also possible to represent speech signals using frequency domain models [7][8]. Conside
a segment of voiced speech 10-30ms long, such that the characteristics can be consider:
stationary. In terms of the sourceffilter model, this segment can be viewed as a time domail
impulse train (excitation) convolved with the impulse response of the vocal tract filter. In the
frequency domain this corresponds to a frequency domain impulse train (excitation) multiplied
by the frequency response of the vocal tract filter. The spacing of the frequency domain

impulse train is the fundamental frequengy), of the speech.

Sinusoidal coders [18][27] represent speech as the sum of a bank of sinusdideirssc
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L
gn = Z B, codw,,n+6,,) (3.1)
m=1

where the paramete{s,}, {w,}, {6.} represent the magnitudes, frequencies, and phases of

the sinusoids. To determine the frequency of each sinusoid, simple peak-picking of the higf
resolution Discrete Fourier Transform (DFT) magnitude spectrum is used. The magnitude anc
phase of each sinusoid is then obtained by sampling the high resolution DFT at these

frequencies.

As the speech characteristics are non-stationary, the model parameters must be updated
regular intervals. Parameter update intervals (frames lengths) of 10-30ms are common. /
limit, L. is placed on the number of possible peaks. In frames with more_thampeaks,

max ?

only peaks above a certain magnitude threshold are included in the model. Ndieghambe

varying, as the number of peaks from frame to frame varies.

To synthesise speech using the sinusoidal model, the decoder gehesateswaves of the

estimated magnitude, frequency, and phase. However, care must be taken to ensure continu
of the sinusoids at frame boundaries. This is achieved by slight adjustment of the mode
parameters to ensure smooth evolution of the synthesised speech signal across fran

boundaries.

The sinusoidal coder can be described as a parametric coder, as it describes the speech sig
using a set of model parameters. Unlike waveform and hybrid coders such as CELP, nc
attempt is made to reproduce the original speech waveform éxattistead, the validity of

the model assumptions are relied upon to produce good quality synthesised speech.

The sinusoidal model is capable of representing both voiced and unvoiced speech. Pea
picking the short term DFT magnitude spectrum of unvoiced spedkcipraduce model
parameters that tend to be randomly distributed. For example, the frequencies of the pealk

will not be related as for voicedespch which can be modelled as a harmonic series.

Due to the error weighting filter in the analysis by synthesis loop, CELP actually attempts to match the

weighted speech waveformot the original speech waveform.
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The authors of [18] report that for frame lengths of less than 10ms, the speech signa

reconstructed by the sinusoidal model is perceptually indistinguishable from the original.

3.2 Harmonic Coding

One of the problems with the sinusoidal coder is the time varying number of parameters, whict
after quantisation leads to a non-uniform bit rate. During voiced speech, the sinusoid

frequenciegw,} will be multiples of the fundamental. Thfs_} can be efficiently modelled

as multiples of the fundamental frequency for the current frame:

w,, = Mw, (3.2)

m

Only the fundamental, = 2rFO/F, is transmitted{w,} are then determined as harmonics of

the fundamental. The number of harmonics,can also be determined from:

U U
L=0-0 (3.3)
Wo [

Thus (3.1) becomes ttmarmonic[27][21][28] sinusoidal model:

L

gn = Zl B, codw, mn+8,,) (3.4)
=
This is a reasonable approximation for voiced speech, however for unvoiced speech problem
arise. In some cases modelling unvoicedesp with a harmonic model produces a periodic
component in the unvoiced synthesised speech. This is a poor model of unvoiced speec
which is usually aperiodic noise. Thus care must be taken when using the harmonic model t
represent unvoiced speech. It is shown in later chapters that by suitable selection of th
harmonic phases, unvoiced speech can be faithfully represented using the harmonic sinusoid

model.

3.3 Mixed Excitation

The classic source-fiter model assumes the excitation signal is either voiced or unvoiced. Thi

leads to coding models that synthesise either voarednvoiced speech. This model is
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adequate for representing many speech signals, however in practice there is often a mixture
periodic and aperiodic energy. Thus there exists a need for a more general model that |

capable of representing voiced, unvoiced and partially voiced speech.

When producing voiced speech, a partial constriction of the vocal tract can produce turbulenc:
that introduces unvoiced energy into the speech signal. The sounds resulting from the partic
constriction are known asiced fricatives For example consider the voiced dental phoneme

J (e.g. "th" in "these"). This is produced by creating a constriction near the end of the vocal

tract (tongue touching teeth).

Figure 3.1(a) is the magnitude spectrumdffrom a female speaker. Note the uniformly
spaced harmonics below 1000 Hz, indicating periodic or voiced energy. Above 1000 Hz, the

distribution of the energy appears more random, indicating the presence of unvoiced energy.

The simple voiced/unvoiced excitation models fail to faithfully reproduce partially voiced
sounds. In addition, non-speech inputs such as background noise are often poorly modelled t

these coders, leading to unpleasant perceptual effects at the coder output.

To alleviate these problems, thexed excitatiorvoicing model was proposed [31]. Coders
employing mixed excitation relax the voiced/unvoiced classification to provide excitation
signals containing both periodic and aperiodic energy. Usually, the spectrum is split into
several regions or bands. A separate voicing decision is then made for each band an

transmitted to the decoder.

A mixed excitation vocoder that has gained recent prominence is the Multi-Band Excitation
(MBE) coder [28], which divides the spectrum up itabands of widthFO. Thus for voiced
speech, one harmoniclvbe present ireach band. A voiced/unvoiced decision is then made

for each band, based on the type of energy (periodic or aperiodic) the band contains.

Figure 3.1(b) illustrates the MBE model voicing decisions for the voiced fricative example of
Figure 3.1(a). This is an example of applying the MBE model to partially voiced speech. For
fully voiced speech, each bandllveontain periodic energy, therefore the entire spectrum

would be declared voiced. Conversely, unvoiced speech consists of aperiodic energy, thus tf
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entire spectrum would be classified as unvoiced. Therefore the MBE model is capable of

representing voiced, unvoiced, and partially voiced sounds.
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Figure 3.1: Voiced Fricativé, (a) Magnitude Spectrum, and (b) MBE Voicing Decisions

Note the clustering of the voiced harmonics at the low frequency end of the spectrum. This

leads to a more economical voicing representation for reasons described below.

Partially voiced sounds are formed by the turbulence created by partial constrictions in the
vocal tract during voiced speech. Usually, the constrictions are formed near the end of the

vocal tract. For example, the voiced dental phoneme discussed above is formed by the tongt
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touching the teeth. The resulting unvoiced energy is therefore only filtered by a short length of
the vocal tract. However the voiced component of the excitation is always produced at the
base of the vocal tract. Sounds that excite a shorter cavity lead to higher frequency energ
than those that excite a longer cavity [1]. A musical analog is a pipe organ; lower frequency

notes are produced by longer pipes than higher frequency notes.

The high frequency unvoiced energy tends to be of lower energy than the low frequency voicec
energy due to the combined effect of lip radiation (+6dB per octave), and the high frequency
roll off of the glottal waveform (-12dB per octave). The net effect is an attenuation of -6dB

per octave over the entire speech spectrum, thus attenuating the high frequency unvoice

energy with respect to the low frequency voiced energy.

Thus for partially voiced (mixed excitation) speech signals the unvoiced energy tends to be
confined to the higher frequencies, while voiced energy is present at the lower frequencies
The above physiological argument leads to the justification wioabandmixed excitation

model. A transition frequencyy,, is defined. The two-band model uses voiced (periodic)
excitation beneatlw, and unvoiced (aperiodic) excitation abawe Such a model has been

proposed and implemented by several authors in time [32][33][34] and frequency domain
[21][29] coders.

Using Figure 3.1(a) as an example of partially voiced speech, the transition freqwgncy,
would be located at 1000 Hz. In cases of fully voiced spewclvould be situated at a high

frequency (4000 Hz). Conversely, for fully unvoiced speeghyould be positioned at O Hz.

3.4 Harmonic Magnitude and Phase Estimation

This section presents an approach for estimating the harmonic magnitudes and phases th
derives results previously presented for sinusoidal [18] and MBE [28] coders. To the authors
best knowledge this derivation has not been presented elsewhere, however a differer

derivation for the sinusoidal case was presented in [18].

For the purposes of speech analysis the time domain speech sﬁghaﬂs divided into

overlapping analysis windows (frames) ¥jf, samples. The centre of each analysis window is
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separated byN samples. To analyse th8 frame it is convenient to convert the fixed time

reference to a sliding time reference centred on the current analysis window:

s,(n)=s(N +nw(n)n=N,,,...,N,, (3.5)
. . _ [N, O.
where w(n) is a tapered even window of, (N, odd) samples N, = _%?E is the lower

limit of the window, andN,, = E\I?WE is the uppetimit of the window. A suitable window

function is a shifted Hanning window:

w(n)=0.5-0.5co n - Nu)

w

En= N, Ny, (3.6)

To analyses, (n) in the frequency domain thdl,, (N, > N,., N, even) point Discrete

Fourier Transform (DFT) o8, (n) can be computed:

Ny —'an H(n
S )= Ss (e My =o,L...,% 3.7)

n=Ny,

N
As s, (n) is real, S|, (k) for k:O,L...,% is sufficient to represent the signg)|(n) in the
frequency domain.

From the frequency domain speech sig%(k), we wish to obtain estimates of the harmonic

model parameters for thé& frame;{A.} for m=12...., L, anda),, where{Al } are defined as

the complex sinusoidal amplitudes:
A, = B exy{j6,) (3.8)

Consider a voiced speech signal centred on the current analysis frame. This can be represent

using the harmonic sinusoidal model:

L

s(n=73 B cosenfn IN+6,) (3.9)
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Consider the DFT of s(N+n)n=N,,...,N,,; S'(), and the DFT of

wn)n=N,,....N,,; W(k). If (3.9) is substituted into the(n) term of (3.5), the DFT

wu !

computed with (3.7) will consist of the convolution ®f(k) with W/(k):

S\(K=S(§ov k (3.10)

where thel] operator denotes (circular) convolution. The seque@'c(k) is a weighted

frequency domain impulse train:
Ngw & 0 wyN,O N
S(W=—"F Adk-m——"0 k=04...,—¢ 3.11
(§=—773 Adtk-m—20 k=01... = (3.11)

W, N
The impulses are weighted by and spaced byoz—dﬁ samples. In (3.11) the DFT index
T

|
WoNgs , . . . . .
k- m°2—dft is rounded to the nearest integer, this convention applies to all DFT indexes in
T

this thesis.

As w(n) is an even real sequend&/(k) is even and real. In most cases (except for very low
w), speakers), the spacing between the impulses in (3.11) is large compared to the "width" o

W(k). Consider the amplitude af/(k) at a distance of one harmonic spacing either side of

Ndft

W,
the centre of the window, i.¢&k| = ;— The magnitude o#v(k) is small compared to the
m

magnitude at the centre of the window:

w(l) Ndft
21T

WhenW(k) is convolved withS' (k), the effect of the window is to spread the energy of the

%« w(0) (3.12)

frequency domain impulses ig' (k) over a small region centred on each harmonic. Thus a

small amount of energy from the™ harmonic will be spread to the adgnt m—1 andm+1)

harmonics. However, due to (3.12) the impact of adjacent harmonics is small.
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Thus the weight\| of them™ harmonic is not significantly affected by adjacent harmonics, as
the magnitude oW(k) falls of quickly either side of the centre of each harmonic. Therefore
S, (k) can be approximated as the sumlof [77/w,[] orthogonal functions, each function

consisting of the convolution of a shifted frequency domain impulseWa(kd.

N
Using the identityZ(k) %Z —| , We can obtain an expression for
Su(k):
18 . wloNan ; Ngr
== oli- m———MW(k-1), k=01...,— 3.13
S(§=52 3 A mo Bk ), k=0 (3.13)
where:
w,N O
a, = Eltlm—o.s)o—‘“t + 0.5 (3.14)
B 2 B
and:

wyN O
b, = ﬁm+o.5) " +0.50 (3.15)
B an B

As adjacent harmonics are assumed to have no effect on the current harmonic, the convolutic

can be bounded by, and b, to either side of the centre of the current harmonic. For

example, withFO = 400 Hz, F, =8,000 Hz, N4, =256, a, andb,, are tabulated below:

a, 6 19 32 45 58 70 83 96 109

b, 19 32 45 58 70 83 96 109 122

Table 3.1: Example ofa,} and{h,} calculation
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Assuming «, is known, equation (3.13) can be used to determine estimates of the model

amplitudes{ A'ﬂ} Harmonic sinusoidal coders [21] sample the magnitude and phﬁékc)f

AAN
at the centre of the harmonics@f. Substitutings = m ; ™ into (3.13):
s

0m = I (3.16)

Another approach is used for MBE coders [28]. Considemthéband (harmonic) in (3.13)

bounded byk=4a,,...,b,. A cost function is defined that measures the error between the

measured signad, (K and the synthesised signal given by:

. AT wyNg. O =
=" Wk- m—=0 k=a.,..., 3.17
S(K > E o % ;I o N (3.17)

The cost function is defined as:

b

E==Z%

k

S(R- 5K (3.18)

This cost function may be minimised with respect&o using calculus. For the purposes of
calculus A, must be considered to be a function of two independent variables (the real and

imaginary part). Therefore there are several ways to differenBateith respect toA. ,

depending on the method used to combine the partial derivatives. A more meaningful leas

squares estimation procedure is described in Appendix Al.2, which leads to the expression:

b 0 w N O
SOWE Mo |
. y
A =2 %b . ; (3.19)
zm WEk— mLNdﬁ
& | O 21
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Figure 3.2 illustrates the estimation {(B,'n} for a N, =255 sample frame of voiced speech.

The solid line represents the magnitude spectrum of the speech, the stars represent it

magnitude samples for each band obtained using (3.19).
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Figure 3.2: Sinusoidal Model Magnitude Estimation using the MBE Method

3.5 Pitch Estimation for Harmonic Coders

The expressions for estimating the harmonic magnitudes and phases in the previous sectic

were derived assuming the fundamental frequency for the current analysisdyasnknown.

In practice this must be estimated from the input speech signal.

A method for determining an estimatecdf based on a frequency domain analysis by synthesis

model is presented in [28]. A cost function is defined:

(@) = 3 [Ea(@h)] (3:20)

E,@h)= 3 (8100)- 8, (k. m)B(k) (3.21)

k=g,
. ~ O W-N . O

= AWk m>2"Q 3.22
S(knm=A a on B (3.22)
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where S| (k,m) is the frequency domain synthesised speech forthéand, andG(k) is an

optional frequency-dependant error-weighting function. The modelled spé&;@hm), is
synthesised assuming that every band is voictvdiced synthesised speg¢ch The

parameteriﬁ{n} are estimated using (3.19).

To determine the fundamental (3.20) is evaluated for a range of passikiues (e.g. 50-
400 Hz), and the value dfj, that minimisesE(c?)(',) is chosen as the fundamental frequency

estimate for this frame. The procedure can be considered to be analysis by synthesis in tf

frequency domain. For each possible fundamental, the model parameters are estimated al

used to synthesise an all-voiced estimai'@(k,m), of the original frequency domain speech,

S, (k). This estimate is then compared to the original in a MSE sense to determine the

optimum pitch estimate.
The algorithm is described below:

1. Initialise &, to start value.

no

Estimate{A'n} using (3.19), given the current valueddy.
3. DetermineS, (k,m) using {A’n} estimated in step (2).
4. DetermineE(c?)(')), store currenty, if this is the global minima.

5. Incrementd),. If new &), smaller than stop value, go to step (2).

Figure 3.3 is an example of evaluating (3.20) for a range of possible fundamental values. Ir

this case a global minima at the fundamental frequelR@y=(233 Hz) is evident.

The estimation of the harmonic magnitudes and phases depends on the accurate estimation

the fundamentaléd, [28]. For them" harmonic, any error in the fundamental estimate
Aw), = o, - &, is magnified by a factor ah. Thus errors i, will influence the estimation

of the high order model parameters more than the low order parameters. Therefore th
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component of the total erroE(o?)(')), contributed by the high order harmonics is more sensitive

to variations ind, that the component from the low order harmonics.

x1010

Error

100 150 200 250 300 350 400
Frequency (Hz)

mH
o

Figure 3.3: Plot oiE(o?)(')) for Frame of Female Speech

Unfortunately, the error from the low order harmonics has a much higher amplitude due to the

predominance of low frequency speech energy. Thus the low order harmonics contribution tc
the total error tends to domina&(o?)(')). This effect can be removed by appropriate choice of
G(k). The frequency weighting function for Figure 3.3 was chosen to emphasise the error in

the high order harmonics:

k< N /4

Glk)= Q,k 2 Ny, /4

(3.23)

In other words, an ideal high pass filter with a cut off at half the Nyquist rate. This prevents
the contribution from the high energy, low frequency harmonics contributing to the error term.

Instead, the error is determined from the high order harmonics. This produces an error tern

E(o?)(')) that is more sensitive to errors in the estimated fundamental.

This pitch estimation technique has the ability to resalyéo any desired resolution. This is
important as if@), is too coarsely estimated, then substantial errors will be introduced,

particularly into the high order model parameters. The authors of [28] suggest sampling
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E(o?)(')) at a resolution of 1 Hz to avoid errors in the pitch estimate affecting the accuracy of the

other estimated parameters.

Figure 3.4 presents the magnitude spectrum of a segment of voiced male ﬁéﬁ(@h,

(solid), overlayed with the all-voiced synthetic speech estin@;é(,m) (dashed). In Figure
3.4(a), the fundamentaky,, was obtained to an accuracy of 1 Hz. This high resolution
estimate ofd), was used to obtailé\',v(k,m). Note the excellent match between the original

and synthetic speech. Figure 3.4i{lo)strates the error in the synthetic estimate when a 1 Hz

error in @, was introduced. The match between the original and synthetic signals is especially

poor at high frequencies.

The computational effort of samplirl@(o?)(')) at 1 Hz intervals ofy, is very high. To minimise
computational effort a two stage process is used. InitiE(gZz(')) is sampled on a coarse grid

to determine the minima oE(@)) corresponding to the fundamental,. Then E(@}) is

sampled to the desired resolution in a small range centred on the initial coarse estimate.

The pitch estimates obtained using this technique are still subject to gross errors, as th

function E(o?)(')) typically has several local minima. Thus a pitch tracker is used to post process

the information obtained from the initial coarse samplingz(lb(')). The method used in [28]

looks at several analysis frames in the past and future to determine a suitable coarse pitc
estimate for the current frame. Note that analysis of future frames requires the introduction o
delay, significantly increasing the overall coding delay. After pitch tracking, the coarse

estimate is refined to the desired accuracy.
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Figure 3.4: Plot o5, (k) (solid) andS, (k,m) (dashed) for: (a) No error ifa,, and (b) 1 Hz

error in &Jj,

3.6 Voicing Estimation for Mixed Excitation Coders

The analysis by synthesis pitch estimation equations in the previous section assumed the

voiced speech was presented as the input signal for the current analysis frame. As discusse

previously, the input speech signal may co
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+nsist of both voiced and unvoiced energy. For mixed excitation frames, the periodic energy
will tend to be restricted to the lower frequencies, and aperiodic energy confined to the highel

frequencies.

The authors of [21] have described a two-band voicing model based on a Signal to Noise Rati

(SNR) which measures the fit of the harmonic model for this frame:

SNR= o

2

wl

w . (3.24)
s.(n)-4. (@)

where §'W(nc?)(')) is the all-voiced time domain speech for this frame synthesised using the

estimated model parameters. Equation (3.24) can also be expressed in the frequency domain

Ngit /2 2
5500
SNR= =—1E((IT)_ (3.25)

with G(k):l in (3.21). To derive the harmonic model parameters it was assumed that the

speech for this analysis frame was fully voiced ((3.9) and (3.22)). Aperiodic (unvoiced)
regions of the spectrum do not contain harmonics of the fundamental, thus in these regions tt

model will break down.

For fully voiced speech the all-voiced estimated model parametirslogely match the
original speech, thus the SNRIlvibe large. A partially voiced frame will result in a poorer
match to the harmonic model, thus the SNR will decrease with decreasing voicing. A totally
unvoiced frame will result in a still lower SNR. Assuming that the voiced energy will be
confined to lower frequencies, a rule based approach is used in [21] to relate the SNR to th

two-band voicing model transition frequeney,. The transition frequency is quantised with

3-4 bits.

Multi-Band Excitation (MBE) coders determine a local voicing measure for each band:
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v'(m):M,m:LZ,...,M (3.26)

S s

with G(k):l in (3.21). This measure represents the normalised model error over"the
band between the original speech and the speech synthesised using the harmonic model.

band containing voiced energy will have a small error tdj‘im((f)(')), thus v' (m) will be close

to zero. Unvoiced energy will have a poor fit to the harmonic mad@'h) will therefore be

close to one.

In [28] the voicing measure in each bamd(m), is quantised to one bit by comparison to a
fixed threshold. The energy in each band is therefore declared \wiaguvoiced. More
recently, other MBE coders have been presented that quantise the voicing using one bit fo
every three bands [30]. Typically, 12 bits per frame are required to quantise the

voiced/unvoiced decisions.

3.7 Problems with Analysis Techniques

Some problems with the parameter estimation algorithms described above have bee
encountered by the author. A literature survey has indicated that the problems have not bee
previously documented. The problems are due to the assumption that the speech (and hen

sinusoidal model) parameters are stationary over short periods (10-30ms).

Figure 3.2 demonstrates a violation of the short-term stationary assumption. The high orde
harmonics appear to have energy spread over a wider range than the low order harmonic

This is caused byy, changing as the frame was sampled. The effect is most noticeable for

high order harmonics, as any change in the fundamental is multiplieoh fyr the m™

harmonic.

The assumption thady, is stationary over short (less than 30ms) periods therefore appears

invalid. This can lead to errors in the estimation of the other model parameters, such as th
harmonic magnitudes and phases. Errors can arise as the techniques presented in the previ

sections assume a fixed fundamental frequency across the entire analysis frame.
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One effect of the non-stationarity af, will be a bias in the estimated harmonic magnitudes,

{A'ﬂ} The expressions used to determiﬁﬁ} assume the energy in the band is from a fixed
frequency sinusoid. The effect of a non-stationary fundamental is to spread the energy over
wider frequency range. Therefore only a portion of the harmonic's energy is within the range

expected by the fixed harmonic frequency analysis equations.

120

Amplitude (dB)
'—\

(o] o
2

D
o

1
[T [T
T AT AT

40 I \ L {H} Ll I L i
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
(a)
1
0.8+
—~ 0.6+
E
Z 041
0.2+
0 1 I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)
(b)

Figure 3.5: Voicing Estimation Problem, (a) Original and Synthetic Spectrum, (b) Voicing

function, v' (m)
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Thus the estimated harmonic magnitudes tend to be biased below the actual harmoni
magnitudes. The effect is more pronounced for the high order harmonics, as the change i

harmonic frequency across the frame is greater.

Another effect of the non-stationarity af, is a bias of the voicing estimators described in the
previous section. Consider the MBE voicing measure fonthdand, V' (m). This function

is evaluated by determining the errcEm(c?)(')) between the all-voiced harmonic model of the

synthesised speecB, (k,m), and the original speecis, (k).

The model of the synthesised speech assumes the speech is stationary across the analysis fra
Thus the synthesised harmonics are modelled as stationary sinusoids. Figure 3.5(a) illustrate
the original magnitude spectrum (solid) with the all-voiced synthetic spectrum (dashed). The
corresponding voicing measure as a function of frequency is presented in Figure 3.5(b). A
voicing measure near zero indicates voiced energy in a band, a voicing measure near

indicates unvoiced energy in the band. Due to the poor match between the original an
synthetic spectrums at high frequencies, the voicing function is biased towards unvoiced. The

speech is, however, clearly voiced. Thus the non-stationarity,otould result in an

erroneous classification of the energy in the high frequency bands to unvoiced.
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Figure 3.6: Time Domain Plot of Transition Region in "Juice"

The sinusoidal/MBE analysis expressions also have difficulty correctly analysing speech during

transition regions, for example onsets of voiced speech. Consider the example presented
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Figure 3.6, a time domain plot of a unvoiced to voiced transition at the start of the word

"juice”, uttered by a female speaker. Note the abrupt transition from unvoiced to voiced.

Figure 3.7(a) shows the same segment in the frequency doﬁi@(ln) (solid), and the all-

voiced synthetic estimate of this speeé@,(k,m) (dashed). The MBE analysis expressions

have had some difficulty in attempting to model the speech. An erddy is evident, as the

positions of the original and synthesised harmonics do not match. Errors are also evident in th

harmonic amplitude modelling.
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Figure 3.7: Estimation of Voicing in Transition Region, (a) Original and All-Voiced Synthetic

Speech Magnitude Spectrum, and (b) Voicing Function
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Figure 3.7(b) illustrates the corresponding voicing functidl(m). Due to modelling errors,

the voicing function estimates the speech as completely unvoiced. This is despite the fact the
the amplitude of the voiced section of Figure 3.6 is much larger than the amplitude of the
unvoiced section. Further examination of Figure 3.7(b) suggests that the frame should be

considered partially voiced due to the harmonic structure of the low frequency region.

Thus it can be argued that the voicing measure defined in [28] and (3.26) fails to adequately
deal with transition regions that clearly contain a mixture of voiced and unvoiced energy. An
optimal voicing estimation algorithm would declare the low order harmonics voiced, and the

high order harmonics unvoiced.

The failure of the voicing measure to deal with transition regions such as illustrated in Figure
3.6 is significant subjectively. In this example a speech frame that should be modelled as
partially voiced is modelled as completely unvoiced. The energy of this frame is higher than
the previous unvoiced frames, due to the onset of the high energy voiced speech. Thus a sho
high energy burst of noise is heard in the synthesised speech, instead of a smooth transitic

from unvoiced to voiced speech.

The reason for the failure of the analysis expressions is due to the rapid transition. The nois
(unvoiced section) is suddenly switched off, and the periodic (voiced) section suddenly starts
These rapid transitions can be viewed as rectangular windowing of the noise and voiced speec
sequences in the time domain. Thus the frequency domain harmonics of the voiced speech a
convolved with the DFT of the rectangular window, resulting in significant smearing of the

harmonic energy in the frequency domain. The "smeared" harmonics no longer resemble th

voiced synthetic harmonics, thus a poor match and \Hiﬁ‘n) term is obtained resulting in an

estimate of the energy in that band as unvoiced.

3.8 Comparison of Coding Schemes

The following observations have been made by the author after conducting a literature surve
of the time and frequency domain communications quality speech coding algorithms presentex

in the literature.
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CELP is capable of coding communications quality speech at bit rates down to about 5kbit/s
Typically, 75% of the bit rate is allocated to the excitation (codebook parameters). Below
5kbit/s, the quality sharply degrades as not enough bits are available to adequately represe
the excitation. Most of the computational complexity is in the codebook searching algorithm,

and is proportional to the codebook sizes and update rates of the excitation parameters.

The adaptive codebook contributes significantly to the quality of CELP due it's ability to build

up a good model of the excitation. However, the inherent memory of the adaptive codebook
also contributes to its poor performance in noisy channels. Bit errors in the excitation
information cause the adaptive codebook contents of the encoder to differ from those in the
decoder. Due to the recursive nature of the adaptive codebook these errors may remain f

some time.

As CELP uses a modified waveform matching criteria to code the input speech, it is capable o
coding background noise with reasonable fidelity. Few annoying artefacts are introduced with
non-speech inputs. However, waveform matching may be a somewhat wasteful approach t
coding the speech, as the human ear is relatively insensitive to short term phase errors. Als
the MSE criteria used in CELP does not reflect the human ear's logarithmic magnitude

response.

Parametric coders (sinusoidal, harmonic, MBE) can provide communications quality speect
below 5kbit/s. They do not exhibit a knee in performance, but rather degrade gracefully with
falling bit rate. Unlike CELP, they require model parameters such as pitch and voicing to be
extracted from the speech signal. Reliable estimation of these parametiira sigstificant

problem. The estimation of these parameters is often performed by analysing several frame
introducing significant delay. As these coders attempt to fit a speech production model to the

input signal, they tend to be poor at reproducing non-speech signals such as background nois

Parametric coders have a longer frame rate than CELP for the excitation information (typically
20ms compared with 5ms for CELP), leading to lower overall bit rates for equivalent speech
quality. In addition, there is no inherent memory, as with the adaptive codebook in CELP.

For this reason, parametric coders tend to be more robust to channel errors than CELP.

The large, time varying number of parameters in sinusoidal coders can make them difficult to

guantise. For example, in harmonic coders, the number of phase and amplitude parameters
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dependant on the current fundamental frequency and therefore time varying. This is in contras
to CELP coders which have a fixed number of parameters for each frame. Fortunately there i
usually a large amount of correlation present between adjacent parameters in a given fram
For instance adjacent harmonics often hawdles magnitudes. This can be exploited to

convert the magnitude parameters to a fixed number of parameters per frame for quantisatio

and transmission.

3.9 Measures of Speech Quality

One difficult aspect of low rate speech coding research is the assessment of speech quality aft
coding. Speech quality assessment is divided into two general areas; objective and subjectiw

measures.

Subjective measurements are performed by playing coded speech samples to listeners and us
their subjective responses to assess the speech qualityforfal subjective testing large

numbers of listeners and careful experimental design and statistical analysis are necessary
remove experimental bias and obtain useful results [53]. Typically, only large organisations are

equipped to perform formal subjective testing.

Informal subjective tests discard some or all of the experimental rigor of the formal tests to
expedite the testing procedure. For example, simply listening to coded speech compared to tf
original may yield significant information about the strengths and weaknesses of the coding
process. Such tests are highly subjective, and perceived coding characteristics tend to va
widely with different listeners. However these tests are useful where significant differences are
easily determined. Informal subjective tests are very useful during development and tuning o

coder design as they can be executed quickly.

Objective testing uses a computer program to compare coded and original speech waveforn
using a distortion metric [54]. Ideally, this distortion metric will correspond to our subjective
perception of speech and therefore give resuttdas to formal subjective testing. An
objective measure capable of reproducing subjective results for any coded speech signal dot
not exist yet [56][53], however this field is being actively researched [55]. For this reason,

subjective and objective tests often produce different results.

55



Chapter 3 - Frequency Domain Coding Techniques

Several objective measures do exist that produce useful results for coders of a given family, fo
example Segmental Signal to Noise Ratio (SEGSNR) [54] is useful for time domain waveform
coders and some hybrid coders such as CELP that incorporate waveform matching
mechanisms. Also, measures exist that evaluate elements of speech coding algorithms, such
Cepstral Distortion (CD) [54], and Spectral Distortion (SD) [54], which are often used for

measuring the distortion introduced by the quantisation of LPC parameters.

Sinusoidal coders have proven difficult to evaluate using objective measures, mainly becaus
most low rate algorithms discard phase information. Thus waveform based measures such :
SEGSNR which are very sensitive to phase have not been useful for most previous sinusoid:
coding work. However, the techniques developed for sinusoidal coders in this thesis do
attempt to preserve the harmonic phases, therefore a useful objective measure based ¢
SEGSNR in the frequency domain is used to evaluate the phase modeling techniques i
Chapter 6. A Spectral Distortion (SD) method is also used to evaluate the LSP quantise

performance in Chapter 7.

3.10 Conclusion

This chapter has presented the background information and analysis that is necessary for tt
presentation of the following thesis contribution chapters. Most importantly, the concept of

harmonic sinusoidal coding was introduced and qualitatively and quantitatively examined.

Chapter 4 presents a pitch estimation algorithm developed by the author for use in harmoni
sinusoidal coding algorithms. This algorithm combines the properties of a square law non-
linearity with the MBE pitch estimation algorithm presented in section 3.5 to produce a robust

pitch estimator.
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4. Non-Linear Pitch Estimation

This chapter presents a pitch estimator based on the application of a square law non-linearity t
the input speech signal. The algorithm is denoted Non-Linear Pitch (NLP). The algorithm has
moderate computational complexity, low algorithmic delay (small buffering requirements), and
robustness to gross pitch errors (halving and doubling). The algorithm employs a minimum

number of experimentally derived constants.

After a survey of existing pitch estimation algorithms, it appears that no other algorithms in the
literature use a non-linearity combined with a secondary pitch estimator for post processing

Pitch estimation concepts were introduced in section 2.4 of this thesis.

The NLP algorithm was developed using three evaluation techniques dencaatbastic
contour, and subjective These techniques are presented and discussed in section 4.5, anc
objective results presented for the automatic method, where the NLP algorithm is shown tc
perform well compared to two other algorithméll pitch estimators will fail under certain

circumstances. The failure modes of the NLP algorithm are carefully examined and presentet

in section 4.6.
Input NLE Pit(.:h MBE qut N 'Pitch . 'FO
Speech Estimation Processing Refinement Estimate

Figure 4.1: Pitch Estimation Block Diagram

The NLP pitch estimation algorithm is a three stage process, illustrated in Figure 4.1. The first
stage (section 4.1)hasic pitch extractiondetermines a set of candidate values from a frame
of input speech using a process based on the properties of a square law non-linearity. The ne
stage (section 4.2post processinguses a variation of the MBE pitch estimation technique
[28]. The final stage (section 4.3)itch refinementis used to obtain an accurate estimate of
the fundamental frequency for the current frame. This stage uses a low complexity pitch
refinement algorithm. One possible disadvantage is that the algorithm does not provide ai

estimate of voicing, ie the algorithm will return a pitch estimate even if g#®chgs unvoiced.
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Pitch estimation is a difficult task for reasons described in section 2.4. One of the main
problems is that no comprehensive speech production model exists that describes all of th
effects observed in speech signals. For this reason it is difficult to formulate or evaluate a pitct
detection algorithm based on a quantitative model of speech production. Therefore the

operation of the NLP algorithm is analysed in a largely qualitative manner.

One problem with many pitch estimators is heavy reliance on experimentally derived constants
These are often included in the post processing stage to improve the performance of a bas
pitch extractor. Problems arise as these constants are often tailored to correct specific failure
of the basic pitch extractor encountered during development. This leads to breakdown of the
pitch estimator with other speech utterances outside the development database. It is for th
reason that many of the pitch estimation algorithms reported in the literature have performanc

that is difficult to reproduce, or even assess objectively.

4.1 Basic Pitch Extractor

Pitch estimators based on non-linearities have been proposed by several authors, a summary
these algorithms is presented in [4]. The non-linearity is generally applied directly to the
speech signal. Non-linearities are often used to spectrally "flatten” the speech, ie to partially
remove the effects of the vocal tract filtering. Another use of non-linearities is to enhance the

fundamental through the superposition of difference tones produced by harmonic distortion.

A new basic extraction algorithm is presented, based on a square law non-linearity. The no
linearity is used to regenerate the fundamental from band limiestsp By peak picking the
Discrete Fourier Transform (DFT), a set of candidate pitch estimates can be determined

These candidates are then passed to the next processing stage for evaluation.

Several other non-linearities were tested experimentally (for example cube law and centre
clipping) however the square law provided the best performance. For this reason and it's eas

of implementation on modern DSP chips, the square law non-linearity was chosen.

Given a speech signal represented by the sinusoidal model:
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L

(N=> B cofw, mn+8,) (4.1)

m=1

consider the application of a square-law non-linearity to (4.1):

sz(n):i B, cogw, nm+ Gm)i B cofw, ni6,) (4.2)
sz(n)=%i1 :1 B, B[cos{a)o i{ m+ )+9m+6|)+ coéw0 e )+ em—e,)] (4.3)

The second term inside the square brackets will introduce a large number of components at tf

fundamental, wheim—-1=1. A large DC term will also be present, whar= 1. A smaller

number of components will be generated at multiples of the fundamental. Note that energy a
the fundamental frequency will be generated by the non-linearity even when the fundamenta

has been removed fros(n), eg. when the speech has been band-pass filtered.

A frequency domain view of the effect of the square law non-linearity can be obtained by

considering the identity:

oFT{x()y( 1) = 4 9= 3 X(OM(k-) @.4)

where X(k) is the N point DFT of x(n) and Y(Kk) is the N point DFT of y(n). This

identity states that a multiplication of two time domain signals corresponds to a (circular)
convolution of the Discrete Fourier Transforms of the two signals. Therefore, the
multiplication of a time domain signal by itself (squaring), leads to the autocorrelation of the

DFT of the signal in the frequency domain:

oFT{(n)} = 2§ =%N:_:X(I)X(k— ) (.5)
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The magnitude of this sign{al(k)| will have peaks at frequencies corresponding-t® and

multiples of FO, and can therefore be used as a pitch detector.

Input » 4,$5
Speech

Pitch

-Pick € DFT <«
Candidates Peak-Pick

Figure 4.2: Basic Pitch Extraction

Figure 4.2 illustrates the basic pitch extractor. The fundamental frequency is estimated in the
range of 50-400 Hz, typical of other pitch estimators. The algorithm is designed to take blocks
of M =320 samples at a sample rate of 8 kHz (40 ms window). This block length ensures al

least two pitch periods lie within the analysis window at the lowest fundamental frequency.

The analysis window size is a trade off between algorithmic delay and low frequency accuracy
A shorter analysis window will reduce the delay of the algorithm but havegooaracy when

used to estimate the pitch of low0 speech signals. Other algorithms, such as Inmarsat-M
IMBE [12], use a shorter block length (280 samples for the basic pitch extractor) to offset the
delay caused by forward pitch tracking algorithms. As the NLP algorithm has no forward
pitch tracking, increasing the block length of the basic pitch extractor to impr@ve

performance was deemed a reasonable compromise.

The speech signal is first squared then notch filtered to remove the DC component from the
squared time domain signal. This prevents the large amplitude DC term from interfering with
the somewhat smaller amplitude term at the fundamental. This is particularly important for
male speakers, who may have low frequency fundamentals close to DC. The notch filter is

applied in the time domain and has the experimentally derived transfer function:

1-z71
H(z)=—% 4.6
(Z) 1-0.95z* (4.6)
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Before transforming the squared signal to the frequency domain, the signal is low pass filterec
and decimated by a factor of 5. This operation is performed to limit the bandwidth of the
squared signal to the approximate range of the fundamental frequency. All energy in the
squared signal above 400 Hz is superfluous and would lower the resolution of the frequency
domain peak picking stage. The low pass filter used for decimation is an FIR type with 48 taps

and a cut off frequency of 600 Hz. The decimated signal is then windowed ahgtke512

point DFT power spectrurt (k) = |Z(k)|2 is computed by zero padding the decimated signal

with 448 zeros.

The DFT power spectrum of the squared signal generally contains several local maxima. |

most cases, the global maxima ld(k) will correspond toFO, however occasionally the

global maxima corresponds to a spurious peak or multipleOaf Thus it is not appropriate to

simply choose the global maxima Ui(k) as the fundamental estimate for this frame. Instead,

a set of FO candidates are extracted by determining the positioai of the local maxima of

U (k) These candidates are then passed to the post processing stage for further analysis.

To limit the number of candidates, only those local maxima above a certain thrésloél
considered. The value of the threshold varies dynamically with each frame and is set as .

fraction of the global maximum of the frame:
T=TU(Kyw,) (4.7)

where T, is an experimentally derived constant set to 0.1, lgpdis the DFT bin containing
the global maxima ofJ(k). The frequencies of all those local maxima above a certain
threshold are determined and are known collectively as the set of fundamental candidate

{k,,...,k,} whereV is the number of local maxima (k) larger thanT, andk, is the DFT

bin corresponding to the™ local maxima. It may be useful to adopt a fixed maximunfor
real time implementation of the algorithm. This will constrain the post processing stage to a

known maximum computational load.
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The frequency resolution of the candidates is determined by the size of the DFT. A larger DFT
will enable a higheaccuracy in locating the peak of the magnitude spectrum. The resolution

of the NLP algorithm is given by the DFT bin spacagwhich may be computed as:

S=_s (4.8)

where F, is the sampling ratelN,, is the DFT size, an® is the decimation ratio. For the

current implementation, S =3.125 Hz.

4.2 Post Processing

The post processing algorithm evaluates each of the candidates determined by the basic pit

extractor, and chooses one as the pitch estimate for this frame. The decision is made &

evaluating a cost functioE(a)v) at each of the candidate fundamental frequerwigswhere

w, is related to the candidate DFT Wi by w, = 27k,/DN,, . The fundamental candidate

that minimisesE(a)v) is chosen as the fundamental estimate for this frame.

The cost functiorE(a)) (3.20) is based on the MBE pitch estimation algorithm [28], discussed
in section 3.5 of this thesis. The MBE pitch estimation algorithm santpfes over the
entire pitch range, and chooses the fundamental frequepcthat minimisesE(a)). For

MBE coders such as [12], an efficient time domain form of the algorithm is used. The cost
function of previous and future frames are compared to the current frame using a pitch
tracking algorithm, to determine a coarse pitch estimate. This is then refined by sampling the
more complex, but more accurate frequency domain form of the algorithm in the region of the

coarse pitch estimate.

In the post processing role for the NLP algorithm, the frequency domain form of the MBE cost
function is sampled in small regions around each of the fundamental candidates, leading to
moderate computational complexity. This cost function was described in section 3.5 of this

thesis.
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To reduce computational complexity, the frequency weighting funcﬁoﬁh) was set to

exclude all harmonics above 1000 Hz:

1, K< Ny/8

G(k) = D, k>N, /8

(4.9)

The MBE cost function is sampled between plus/minus 10 Hz of each candidate frequency, ir

2.5 Hz steps.

4.3 Pitch Refinement

A simple pitch refinement algorithm has been successfully used to refine the accuracy of the
fundamental estimate obtained from the post processing stage. This refinement technique

very computationally simple compared to others such as dense sampling of the MBE cos
function [28]. The accuracy has been found to be sufficient for the sinusoidal coder describec

later in this thesis.

A cost function is defined:
L
E(wo) = 3 |S.( mw,)| (4.10)
m=1

which simply samples the power spectrum of the windowed speech signal for this frame. The

argument ofS,, is rounded to the nearest integer. This function is obviously biased towards

longer pitch periods (smaller fundamentals) as it converges to the energy in the spectrumr
However, over the small range of frequencies the function is sampled the bias is not significant
Most importantly, the function does exhibit local maxima in the vicinity of the fundamental of

the frame.

In the pitch refinement role, the function is sampled in two steps. First, the function is sampled
in the range of plus or minus 5 samples of pitch period in 1 sample steps. Then the function i

sampled in the range of plus of minus one sample of the pitch period, in 0.25 sample steps.
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4.4 Example of NLP Algorithm Operation

This section provides a graphical illustration of the NLP algorithm using a frame of female
speech as an example. The input time domain speech is shown in Figure 4.3, and th
corresponding magnitude spectrum in Figure 4.4. Note that the periodic energy in this signal is

largely confined to the low frequency end of the spectrum.

Figure 4.5 illustrates the squared inpuéesgh in the time domain. Note the strong periodic
component at the pitch period, and the DC offset of the signal. Figure 4.6 shows the square
time domain signal after notch filtering to remove the DC component that would otherwise

interfere with the signal componentska0.

Figure 4.7 shows the squared speech power spectrum. In this case, there are two candidat
corresponding to the local maxima near 180 Hz and 360 Hz. These are evaluated by samplin
the MBE cost function in the vicinity of the local maxima k), illustrated in Figure 4.8.

The MBE cost function shows a minima around 180 Hz, which is chosen as the fundamenta

estimate for this frame.

5000 §

-5000 §

Ampitude

-10000 §

50 100 150 200 250 300
Time (samples)

Figure 4.3: Frame of Female Input Speech
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Figure 4.8: Samples of MBE Cost Function at Local Maximél (i)

4.5 NLP Algorithm Evaluation

Testing pitch estimators is an important part of pitch estimator development, often ignored by
many authors in the field. It is relatively easy to develop a pitch estimator that will work
reliably on a certain utterance, but it is very difficult to develop a pitch estimator that will work
reliably across a range of speakers and conditions. Therefore extensive testing over as wide
range of speakers and conditions as possible is desirable to fully test a pitch estimatiol
algorithm. This however, presents problems in the complexity and range of tests to be

considered.

This section presents tests results obtained with the NLP algorithm. The tests are divided int

3 types, automatic, subjective, and listening. The test methodology for each method is
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presented below, and objective results are presented for the automatic method. Befor
proceeding it is useful to discuss the types of pitch errors and the effects of these errors o

speech coders, in particular sinusoidal speech coders.
Failures in pitch estimators can be grouped into two types [37]:

» Gross errors where the pitch error is greater that 1 ms. These errors often occur when the
pitch estimator looses the pitch track completely, for example when the pitch estimator
chooses a pitch estimate corresponding to the first formant, or to a multiple or submultiple

of the actual pitch.
* Fine errors where the pitch error is less than 1 ms.

Of the two error types, gross errors are by far the most serious for sinusoidal coders, an
represents one of the most challenging parts of sinusoidal coder development. Gross pitc
errors produce perceptually disturbing distortions in the coded speech that seriously degrad
the coded speech quality. Once a reliable coarse pitch estimate is obtained (free of gross pitc
errors), reliable algorithms (for example [28]) exist for increasing the accuracy of the estimate
and therefore reducing the fine error. For this reason the tests applied are confined to th

evaluation of gross error performance only.

Due to the lack of comprehensive speech production models, synthetic speech signals wit
artificially generated pitch contours are not suitable for pitch estimator evaluation, except
perhaps for evaluating pitch estimator fine error performance. Thus databases of real speec
signals must be used to evaluate pitch estimator performance. Several criteria can be used
evaluate pitch estimator performance (objective or subjective), these are considered in the tes

described below.

4.5.1 Automated Pitch Estimator Evaluation (@automatiq

This type of testing compares a candidate pitch estimator to a hand estimated reference pitc
database. The criteria of gross errors can be applied and the number of errors counted for ea
candidate algorithm. The candidate pitch estimator with the highest “score” (smallest number

of gross errors) when compared with the reference database is judged to be superior.
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In this case, manually estimated pitch values for a 2400 frame database of 4 speakers we
derived using a semi-automatic pitch detector system similar to [38]. This system presents thi
operator with several “views” of the current frame of speech. The views are the time domain
speech, the DFT magnitude spectrum, and the autocorrelation function. Based on the
operator’s judgement, a decision is made on voicing. If the frame is voiced the operator ther
chooses the peak of the autocorrelation function that correctly represents the periodicity of the

frame.

0 50 100 150 200 250 300

Figure 4.9: Original Speech Window

50 100 150

Figure 4.10: Magnitude Spectrum Window with Harmonic Marker Lines (dotted)
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Figure 4.11: Autocorrelation Window with Pitch Marker Line (dotted)

Figures 4.9 to 4.11 provide an example of the semi-automatic pitch detector operation. Figur:
4.9 is the first window presented to the operator, this window displays the time domain speect
From this window the operator can judge if speech is present, and if it is voiced or unvoiced
The next window (Figure 4.10) presents the magnitude spectrum (solid line) of the speech
Superimposed on this window are dashed harmonic marker lines. These lines are drawn :
multiples of the currenEQ estimate. If the currerftO estimate is correct, these markers will

be aligned with the magnitude spectrum harmonic peaks. This system aids the operator i
choosing the correcF0 estimate for this frame. The final view of the signal is in the

autocorrelation domain, Figure 4.11. For each frame, the software automatically chooses th:
peak of the autocorrelation function as an initial estimate, placing the dotted marker line on the
chosen peak. This initial estimate may be changed by the operator until the correct peak (i

the operators opinion) is chosen.

The reference pitch database was compared to the NLP algorithm and two control pitct
estimation algorithms. The first algorithm is the pitch estimator from the Inmarsat-M IMBE
vocoder [12], which is unique in the literature as being a comprehensively defined specification
used in a practical speech coder. Most other algorithms in the literature are only partly
defined, for example experimentally derived constants are not presented. This makes exat
implementation of these algorithms very difficult. For this reason the Inmarsat-M IMBE

algorithm makes an ideal control for testing the NLP algorithm.

The second control algorithm is an autocorrelation type pitch estimator commonly used in the

literature [39]. The combined results for all 4 speakers (2400 frames total) are presented ir
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Table 4.1. In addition Figure 4.12 compares the pitch contour of the NLP algorithm and the

reference database for a section of male speech.

Algorithm Hits Misses % Correct
Autocorrelation 488 115 80.9
Inmarsat-M 531 72 88.1

NLP 553 50 91.7

Table 4.1: Results for Automatic Pitch Estimator Evaluation

A “hit” is recorded when the pitch estimator under test matches the reference database,

“miss” occurs when a gross error (pitch deviation greater that 1 ms) occurs. No comparison i
performed on unvoiced frames. These were marked during the generation of the referenc
database, and are ignored during pitch estimator evaluation. Over this test database, the NL

algorithm has the lowest incidence of gross errors.
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Figure 4.12: Pitch Contour for NLP (solid) and Reference Database (dashed)
There are several problems with this method of pitch estimator evaluation:

1. Typically each 10 ms frame requires about 30 seconds of analysis for an experiencec
operator. Thus each second of speech requires about 50 minutes of analysis time. For tt
large speech databases needed for reliable pitch estimator evaluation, the amount c

analysis time quickly becomes unreasonable.
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2. No two operators will give the same results. They must make subjediyenjents such
as if any periodic energy is present in the frame, if so which of the possible candidates
presented by the automatic parts of the system represents the likely pitch. This problen
can be alleviated by operator training and averaging the hand estimates over sever:

operators, however this multiplies the analysis time by the number of operators.

3. A pitch estimator with a higher “score” when compared to the reference database is
supposedly superior to another algorithm, however this may not be the case. Gross pitcl
errors have different subjective impact depending on where they occur. For example, &
gross error in a high energy voiced section will be subjectively very disturbing whereas a
gross error in a low energy partially voiced region may be inaudible. Thus simply
comparing candidate pitch estimators against a reference on the basis of a match score
not sufficient to determine the ranking of the candidate algorithms performance. For
example, during the development of the NLP algorithm it was found that some variants of
the NLP algorithm with lower match scores actually sounded superior to those with a

higher match score.
4.5.2 Semi-Automatic Pitch Contour Evaluation (contour)

This pitch estimator evaluation scheme uses an interactive computer program to
simultaneously view several frames of the input speech, and the resulting pitch contour
generated from those frames. The operator visually compares the two windows, noting the
shape of the pitch contour and the speech. Gross errors are easily identified as discontinuitie

in the pitch contour during voiced speech.

This method allows evaluation of speech at a faster rate than the automatic method discusse
above, as several frames are examined at once. Also, the importance of any pitch errors can
evaluated by the operator by examining the input speech where the error occurred. Howeve
this method is still somewhat slow, and the entire test database must be manually re-examine

every time a modification is made to the pitch estimator.
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Figure 4.13: Input Speech Window for Contour Pitch Estimator Evaluation Method
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Figure 4.14: Pitch Contour Window for Contour Pitch Estimator Evaluation Method

The test database detailed in Appendix C was processed using the NLP algorithm and th
resulting pitch contours examined with the contour method. During development of the NLP
algorithm, this provided a way of rapidly determining the position and importance of gross
errors. For example errors in low energy, partially voiced regions were found to have little
impact on the subjective speech quality and could safely be ignored. Gross errors in higl
energy, strongly voiced regions, however were very important and therefore caused analysis ¢
and modification of the algorithm to prevent their occurrence. Thus the contour method
proved to be more effective in testing the algorithm performance than the automatic method

due to it’s ability to distinguish the subjectively important gross errors.

Using the final version of the NLP algorithm presented in this chapter, no gross errors in

strongly voiced regions were encountered over the test database in Appendix C.
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4.5.3 Subjective Testing Using Sinusoidal Codersubjectivg

The final testing method is based on listening tests where the pitch estimator is used to encoc
and decode speech using the sinusoidal coder algorithm [21]. This method is relatively fast, a
listener evaluation occurs at the rate the processed speech is played back. Perceptua
important gross pitch errors show up as impulsive sounds such as “cracks” of “beeps” in the
processed speech. These errors can then be traced to specific coder frames using the cont

method described above.

The test database in Appendix C was processed using the NLP algorithm and the generi
sinusoidal coder described in Chapter 5. No gross perceptual errors were evident over th

entire database.

4.6 Failure Modes for Non-Linear Pitch Estimation

During development the NLP algorithm was tested widely on a variety of speech sources usin
the subjective testing method described above. Under certain conditions, the algorithm woulc
break down, producing subjectively annoying sounds in the synthesised speech. Using th
contour testing scheme the problem frames were isolated for further analysis. This sectior
examines the reasons for these failures of the NLP algorithm, and proposes a pitch trackin

method to alleviate the problems encountered.
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Figure 4.15: Frame of Input Speech

Figure 4.15 is an example of an input frame of speech that produces a failure in the NLF

algorithm, Figure 4.16 is the corresponding squared speech power spdub(k)m The
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failure occurs because the local maximaUfk) at the fundamental (around 170 Hz) is

suppressed compared to the strong global maxima at the 2nd harmonic (around 340 Hz). Tt
local maxima at the fundamental fails to exceed the threshold given by (4.7) and is therefor:

not considered a candidate for the post processing stage.
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Figure 4.16: Squared Speech Power Spectu{k)

The fundamental is sometimes suppressed in this manner due to phase effects. Unlike mat
other pitch estimation algorithms (such as those based on autocorrelation functions) the phas
of the speech spectrum affects the NLP algorithm. Phase effects can cause the product terr
of the summation of (4.5) to add vectorially in a manner that partially cancels the maxima, or at

least attenuates it compared to other local maxima(a) =|Z(k)".

Consider a speech signal periodicdny. A local maxima should occur aI(ko), where
ky = w DNy, /211. However, this local maxima may be attenuated if the complex terms of the

summation of (4.5) add in anti phase. For example, consider the following expanded versior

.21 2

of (4.5) with X(0)X(k,) =1, X ()X (k, ~1)=¢€ 2 , and X (2)X (k, - 2) = e

2{k) = [ XOX(6) + XY X b=+ XD X k- 3+..] (@.1)
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In this case the first three terms would sum to zero. If this cancellation were to continue

through all the terms of the summation, tH&(k) may be very small instead of the desired

global maxima.

One approach often used to improve the pitch estimation process is pitch tracking. Fol
example the MBE pitch estimation algorithm [28] evaluates the basic pitch extractor results for
several frames in the past and future using a dynamic programming approach. This approach
useful for removing the effects of problems in the basic pitch extractor that are isolated to
single frames. However the attenuation of the fundamental due to phase effects is usually nc
isolated to single frames, and may extend across many frames. Thus pitch tracking approach
that consider the basic extractor output from several adjacent frames may not be suitable fc

correcting the problem described above.

As a first order solution a form of backwards pitch tracking has been added to the algorithm
with encouraging results. This algorithm adds to the list of candi(ﬂb;es,K,} the DFT bin

corresponding to the fundamental estimate for the previous frame. Thus the previous frame’
FO is always tested by the post processing algorithm, even if no local maxima of sufficient
magnitude is present in the current frame. This technique encourages continuity in the pitcl
track, but can make the pitch estimator slow to respond to transients, for example the start ¢

new pitch tracks.

Algorithm Hits Misses % Correct
NLP 553 50 91.7
NLP with tracker 531 72 88.1

Table 4.2: Evaluation of Backwards Pitch Tracker using Automatic Evaluation Method

The NLP algorithm with backwards pitch tracker was tested using the automatic method
described earlier in this chapter. The results presented in Table 4.2 indicate that the pitcl
tracker actually slightly increases the number of gross errors. However subjective listening

tests conducted on utterances prone to the phase problems indicate that the backwards pit
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tracking does reduce the number of perceptually important errors, improving the overall

subjective quality.
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5. Generic Sinusoidal Coder

This chapter describes the generic sinusoidal coder developed for this thesis which has evolve
from studies of existing sinusoidal and MBE coders. Features unique to this coder include

techniques used in the analysis, spectral amplitude modelling, and synthesis stages.

The unquantised coder produces output speech of very high quality, in some cases almo:
indistinguishable from the original speech signal. This quality is achieved using a simple and
computationally efficient algorithm, where both voiced and unvoiced speech is represented

using the harmonic sinusoidal model.

Section 5.1 presents the sinusoidal analysis algorithm which extracts the sinusoidal mode
parameters from the input speech. Section 5.2 discusses computationally efficient synthes
algorithms based on overlap/add DFT structures. Section 5.3 presents the spectral magnituc
modelling algorithm which uses a fixed number of Linear Prediction Coefficients (LPCs) to

model the sinusoidal magnitudes. Speech files are available via the internet which demonstrat

the algorithms developed in this chapter (Appendix B).

5.1 Analysis

Figure 5.1 illustrates the sinusoidal encoder algorithm. Inpreéctpis windowed using a 220
sample tapered Windovvv(n) , before being transformed to the frequency domain using a 256
point DFT (computed efficiently using the FFT algorithm). The windowing and DFT of the

input signal are performed using the procedure described in equations (3.5) to (3.7) in sectio
3.4 of this thesis.

Phases and amplitudes are estimated for each harmonic usif@ thetimate obtained from

the Non Linear Pitch (NLP) algorithm described in Chapter 4. The frame rate is 10 ms, which
was chosen to ensure the coder captures rapid changes in the time domain waveform. The
are typically poorly reproduced in frequency domain coders due to the 20-30 ms frame rate:

usually employed.
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. Est. Anp
s(n) —» Window ——» DFT ——» 15 ce
s.(1) S.(K
—» NLP
o, '
Do {R,} {6}

Figure 5.1: Block Diagram of Sinusoidal Encoder

Note that voicing is not explicitly represented, instead it is carried by the phase information.
This removes the need for a voicing estimator. As with other parameter estimators (such a
pitch), voicing estimators are never perfect, and are often a source of artefacts in speec

coding algorithms, in particular in high acoustic background noise environments.

As discussed in section 3.3 of this thesis, most other sinusoidal and MBE vocoders employ ¢
voicing estimator and explicitly transmit a voicing measure to the decoder. For example, the
MBE vocoder divides the spectrum up into bands, and uses a single bit to represent the voice
or unvoiced nature of each band. Sinusoidal vocoders generally employ a two band model
where the lower frequencies are voiced and the upper frequencies are unvoiced. A transitio
frequency determines the changeover between unvoiced and voiced sections of the spectrur

and is usually defined with 3-4 bits.

The potential disadvantage of using the harmonic phases to convey voicing is an increase in k
rate. This problem is addressed in chapter 6 where several schemes designed to model t
harmonic phases are presented and investigated. The phase modeling techniques presente
Chapter 6 apply a voicing measure to the coder but this is not fundamental to the operation c
the unquantised coder, unlike other algorithms such as MBE [28]. For example, other phas
modeling/quantisation algorithms could be employed (eg vector quantisation [60]) that do not

require voicing measures or decisions.

To the best knowledge of the author, the concept of using the phase to convey voicing
information in aharmonic sinusoidal coder is unique. Other authors [18] have used the

generalised sinusoidal model (eg equation (3.1)) to convey voicing using the combination of
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sinusoidal frequencies and phases, however most sinusoidal and MBE vocoders emplo

voicing estimators as a fundamental part of operation, even in the unquantised state.

Thus the model employed is the harmonic sinusoidal model:

() = i B, codw, mn+8,,) (5.1)

where the parametefB,} and{6,} represent the magnitudes and phases of the sinusoids,

w, is the normalised fundamental frequency in radians, land the number of harmonics

given by L = [T7/w, [}

In section 3.4 two methods for estimating the harmonic magnitudes and phases from the DF
of a frame of speech samples were presented. These methods are used in sinusoidal [21] a
MBE [28] coders, two members of the harmonic sinusoidal coder family. A different method

for estimating and representing harmonic magnitudes is presented here, that appears to |

unique.

In this chapter the notation developed in section 3.4 is used, however the superscript denotin

the frame is excluded for simplicity. Thus tNg, point DFT of thel™ frame of input speech
is S,(K, and the estimate of the fundamental frequency for the current framg isThe

RMS magnitude R, for the m" harmonic is defined as:

EP”‘_]' 2|:%
=0 [l 5.2
R, DFZ%ISN(QID (5.2)

wherea,, andb,, (given by (3.14) and (3.15) and repeated here for convenience):

a, = @m— o.s)w;—':lrdﬂo.sﬁ (5.3)
b, = am+ o.s)w;—':lr‘”wo.sﬁ (5.4)
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represent the limits of the current harmonic. This method estimates the average magnitude
the current harmonic. It differs from other magnitude estimators such as those used ir

sinusoidal [21] and MBE [28] coders in several respects:

1. It will work equally well for voiced or unvoiced energy as it considers the entire energy in
the current band and does not constrain it to be sinusoidal (which introduces a bias ir

favour of voiced bands).

2. It is relatively insensitive to small errors in the fundamental frequency estimate. The
estimator in (5.2) merely requires that most of the energy in the band be contained in the

interval betweera,, and b, .

The harmonic phases are estimated by sampling the DFT at the harmonic centres, using

method identical to that used by sinusoidal coders [21]:

8, = arggSWHm?H% (5.5)

5.2 Synthesis

The generic sinusoidal coder algorithm described in this chapter uses sinusoids to synthesis

both voiced and unvoiced speech energy. Section 5.2.1 describes a procedure for determinir

the magnitudes of the sinusoids used to synthesise the speech{ag}waj;iven the RMS

magnitudes{ Rﬂ}. An algorithm for performing the actual synthesis using an overlap add

procedure to interpolate the synthesised signal from adjacent frames is described in Sectio
5.2.2.

5.2.1 Recovering Sinusoidal Magnitudes

To reconstruct the speech signal we need to estimate the harmonic mag{rﬂ‘,y}démm the

RMS magnitudes{ Rﬂ} . Note that although the original signal in the region of the harmonic

may have been voiced (ie a sinusoid), or noise, we use a sinusoid to synthesise the sign:

Therefore we need to determine a suitable amplitude for the sinusoid, given the RMS
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magnitude of the energy in the band. This can be achieved by matching the energy of th

synthesis sinusoid to the energy in the band obtained Rpm

The energy of the sinusoid used to synthesise this signal can be expressed as:
e, = Slamfke meeNand] (5.6)
= .- .
K kz An O 21
where A_ is defined as the complex sinusoidal amplitude forntfieband:

A, =B,exqj6,) (5.7)
and W(k) is the DFT of the analysis Windovvv(n). We assume that most of the energy in
O WoNge O . : :
WBk_ m——=1 lies is the interval bounded by=a,,...,I3,—1 and thatw(k) is real.
T

Therefore (5.6) can be approximated as:

En= 3 ALY (5.8)

Np ~

E,= 8 5 WK’ (5.9)

Note thatB, has been replaced by an estimé;r;‘ due to the approximation of the limits of

W(K). Applying Parseval’s theorem in the DFT domain:

N~ Ngr =1

L5 W) = 3 () (.10

we obtain:
Ngr =1

E, = NB? sz(n) (5.11)

The energy in the band can be determined from the input signal as:
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2
E.= Y ISR =R (5.12)

To match the measured energy in the band to the synthesised energy in the band we eque

(5.11) and (5.12) and solve fd3:

B = Ru (5.13)

Thus given the RMS magnitude for each band, we can determine an estimate of the sinusoid
magnitude required for synthesis. As the Windm(m) is constant, (5.13) reduces to:

B,=R.N (5.14)

m

if we normalise the window such that:

Ngr —1 1

> w(n)=— (5.15)

n=0 N

The factor of N in (5.14) is useful for the DFT based synthesis algorithm, described in the

next section.

5.2.2 Overlap Add Synthesis

Synthesis is achieved by constructing an estimate of the original speech spectrum using th
sinusoidal model parameters for the current frame. This information is then transformed to the
time domain using an Inverse DFT (IDFT). To produce a continuous time domain waveform
the IDFTs from adjacent frames are smoothly interpolated using a weighted overlap add [18]

procedure.

The estimate of the original speech spectrum is constructed using the sinusoidal mode

parameters:
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NZ /3\5 k- k:O,L...,% (5.16)
H B 2

This signal represents the DFT of the synthesised speech signal, and consists of impulse

spaced byw, weighted by the complex harmonic amplitud%;swhere:
= B,ex 0, (5.17)

As we wish to synthesise a real time domain sigé(ak) is defined to be conjugate symmetric

in the periodic DFT domain:
A _ % Ndft
S(Ni - K=3( & 12, —*-1 (5.18)

where S'(K) is the complex conjugate &3(K). This signal is converted to the time domain

using the IDFT:
Ndft
Z S k ﬁzAdft (5.19)

We introduce the notatio§(n) to denote the synthesised speech for ttheframe. To

reconstruct a continuous synthesised speech waveform, we need to smoothly connect adjace
synthesised frames of speech. This is performed by windowing each frame, then shifting ant
superimposing adjacent frames using an overlap add algorithm. A triangular window is

employed for this algorithm and is defined by:

/N 0<n< N
t(n)=B—[n— N]/N Ns< n<2N (5.20)
otherwise
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Figure 5.2: Triangular Synthesis Window

The frame size,N =80, is the same as the encoder. Figure 5.2 illustrates the synthesis
window employed for the decoder. The shape and overlap of the synthesis window is nof

important, as long as sections separated by the frame size (frame to frame shift) sum to 1:
t(n)+t(n- N)=1 (5.21)
The continuous synthesised speech si@@a) for the ™ frame is obtained using:
S(n+ IN)=m(F) N+ M- N1+ h(th mOl.., N2 (5.22)
§n+IN)=%(m N-1) €1, n N1 N..2 N1 (5.23)

Note that the output for the current frame§f@+ IN), n=0,1..., N-1, however storage

must be provided for the future output samptes N, N+1,...,2N-1 so that they can be

added to samples from the next frame.

5.3 Parametric Magnitude Modelling

This section deals with the efficient modelling of the spectral magnitude paral{ﬁ@:rsvith

a moderate order Linear Predictive model. The spectral magnitudes consume the greate
portion of the bit rate, thus compact modelling of the spectral magnitudes is an important

research issue in sinusoidal coding.

84



Chapter 5 - Generic Sinusoidal Coder

Direct quantisation of spectral magnitudes is possible [28], but requires a large number of bits
Also, the number of spectral magnitudes is related to the fundamental frequency and therefor
changes on a frame by frame basis. Thus direct quantisation would require a time varying bi

allocation scheme.

Adjacent spectral magnitudes are highly correlated and tend to describe the vocal tract filtering
action, thus the Linear Predictive Coding (LPC) model is a good choice for modelling spectral
magnitudes in harmonic or sinusoidal coders [29][25][46][48][47]. After the LPC model is

derived, the parameters may be easily transformed to Line Spectral Pair (LSP) frequencies fc

efficient quantisation and transmission.

Obtaining the LPC model for a given frame of speech may be achieved using time or frequenc

domain techniques. Frequency domain approaches [29][25][46] typically use the harmonic

spectral magnitudes (ie some parameter set equivaler{tB,;})) to directly obtain the

autocorrelation coefficient&R(k) which are then used to compute the LPC coefficiéath

and gain termG. Time domain approaches such as [48] use ordinary time domain LPC
analysis applied to the input speech signal. In either case, the spectral magnitudes are usua

recovered at the decoder by sampling the LPC spectrum at the harmonic frequencies.

As the frequency domain approaches use the spectral magnitudes directly, some potenti
advantage exists compared to the time domain approaches which consider the entire sign
including the unwanted effect of pitch on the magnitude structure of the LPC spectrum.
However, the frequency domain schemes exhibit problems in arriving at an accurate LPC
model when the number of harmonics is not large compared to the number of poles, for
example in female speech [50]. Several techniques have been proposed to combat th
problem, for example by using interpolation to produce a large number of spectral magnitude:
[18] [29], or by modifying the LPC modelling cost function and using iterative techniques to

minimise the resulting non-linear cost function [50][49].

The approach used here is to obtain the LPC model using time domain analysis, and to recov
the spectral magnitudes at the decoder using the RMS average of the LPC spectrum in tr

band containing the harmonic instead of sampling the LPC envelope at the centre of the

harmonic. The time domain analysis produces a sgi @PC coefficients{ak} and a LPC
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gain parameteG. The procedure used for determining these parameters is given in section

2.3 of this thesis, and is performed once per 10 ms frame.

Thus the RMS spectral magnitudes can be recovered by averaging the energy of the LP

spectrum over the region of each harmonic:

1

A I:Pm_ zl:%
=0 H( k) L 5.24
R, D{;ﬂl ()ID (5.24)

where H(k) is the N4, point DFT of the LPC model for this frame (given lHyz) in section
2.3).

The effect of the LPC model on the coder quality has been determined using objective anc
subjective tests. Objective results are determined by measuring the Signal to Noise Ratic
(SNR) of the LPC modelling procedure defined as:

o <& 0
o0 YR O
SNR, = 10log,, 3= (5.25)

2%V

The average SNR was determined for a database of 2400 frames containing 2 male and
female speakers for a range of LPC orders. The results are plotted (solid line) in Figure 5.3
For comparison, the average SNR obtained by sampling the LPC spectrum at the harmoni
centres is also presented (dotted line). The sampling is achieved using the following

expression:

21T

o
IA%n _ %Hﬁ (A)oNdna (bm _ am)% (5.26)

where the tern(bm - am) given by (5.3) and (5.4) is a scale factor that is necessary for direct

comparison between the RMS average and sampled cases.
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LPC order

Figure 5.3: Average SNR againptfor RMS (solid) and Sampled (dash{cﬁn}

Before discussing the subjective testing it is useful to compare the baseline coder used in th
work to those employed in the literature. The baseline generic coder speech quality is ven
high, nearly transparent in many cases. Therefore this coder will be extremely sensitive to an
distortions introduced by modelling or quantisation. Note that this is in contrast to most of the
other harmonic coders that employ LPC modelling, many of these exhibit communications
quality speechbefore spectral modelling is employed and are therefore less sensitive to

additional distortion introduced by spectral modelling. Thus the requirements for transparent
spectral modelling in the case of this coder are probably higher than many of the other coder

in the literature.

Informal subjective tests were conducted by processing several test databases and performit
listening tests with several listeners through high quality headphones. A model order of
p=12 was used for the subjective tests, as this performed well in the objective tests. The
LPC modelling stage introduces some cedible distortion into the output speech, however

the distortions are relatively minor and the overall speech quality remains high. A small
amount of bass reverberation was heard for very low pitch male speakers, this may be mor
apparent through loudspeakers, however it is not a concern for band pass applications such

speech through telephone networks.

The subjective tests support the objective tests in the choice of recovery methods for the
spectral magnitudes. The RMS average scheme introduces less distortion for female speake

than the sampled scheme. For males speakers the two schemes both perform well.

87



Chapter 5 - Generic Sinusoidal Coder

The objective and subjective results above show that the RMS average method is superior t
the direct sampling method, in particular for female speakers. With high pitched female
speech, there are fewer harmonics. Consequently, the LPC envelope sometimes attempts
model individual harmonics, instead of providing a smooth spectral envelope that traces
through the harmonic peaks. Thus for female speech, the LPC spectrum sometimes mode
pitch structure as well as spectral envelope information. It is suggested that the RMS averag

method smooths out any pitch structure in the LPC envelope that produces distortion with the

direct sampling method.

From these results it was determined thagpal2 LPC model provides good results. The

small trade off in speech quality was judged to be acceptable given the advantage ir
guantisation that the LPC modelling provides.
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6. Parametric Phase Modelling

This chapter describes several parametric models for the compact representation of th

harmonic phaseé,@m}. These models are applied to the baseline harmonic sinusoidal coder

presented in chapter 5 and evaluated using objective and informal subjective methods. Spee
files are available via the internet which demonstrate the algorithms developed in this chapte
(Appendix B). Compared to the near transparent baseline coder that uses original phases, tl

speech quality is degraded to near toll quality (eg VSELP) for clean speech.

The human ear is often described as being relatively insensitive to the short term phase c
speech. This argument has been used in several speech coding algorithms to discard tl
measured phase information entirely. It is then reconstructed at the decoder using technique
that synthesise the phase function, for example using rule [12], or model based approache
[22].

In practice, phase information is important for high quality synthesised speech. While
discarding the phase information does not significantly reduce the intelligibilityee€bpit can

introduce some unpleasant artefacts. In particular, low pitched speakers such as males suff
from reverberation when the harmonic phase information is removed. Thus, for high quality

harmonic coding, transmission of phases in some form is necessary.

As with the harmonic magnitudes, the number of harmonic phasesaries from frame to
frame. If the phases are directly quantised, this can lead to a prohibatively high bit rate. Thu:
several previous authors have implemented systems that only quantise the low order harmon
phases, substituting uniformly distributed random phases for the high order harmonics
[30][17].

Several authors have developed schemes that model amplitude and phase simultaneously, |
example using ARMA techniques [43], or combinations of ARMA and vector quantisation

[42][44]. In general, the ARMA schemes described assume minimum phases systems. Mos
of the sinusoidal and MBE coder work has discarded the phase information, synthesising it a

the receiver using rule [12], or model based approaches [22].
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The work presented here is based on similar assumptions to [41], eébahs$p not, in general
minimum phase. However unlike [41], the magnitude and phase information are treated
separately, resulting in three phase modelling schemes based on a general cascade minimt

phase/all pass system, excited by an impulse at mjmeOf these schemes, two are shown to

produce high quality speech using a small number of model parameters, with moderate to lov
computational complexity. The number of model parameters is fixed, despite the varying
number of harmonics from frame to frame. For clean input speech, the synthesised speec

guality exceeds that of VSELP.

Section 6.1 describes the development of a phase model for voiced speech that consists of
minimum phase LPC synthesis filter cascaded with an all pass filter. It is shown that the all
pass filter has a strong linear phase component corresponding to the time shift of the origine
signal, and a phase residual component. Three candidate systems are then developed tt
implement this model. The first, described in section 6.2, uses a CELP type analysis by
synthesis loop to determine the model parameters. The second system discussed in section ¢
guantises the phase residual using truncated Discrete Cosine Transform (DCT) coefficients
The third uses a least squares polynomial fit to the phase residual, that is weighted using th

harmonic magnitudes (section 6.4).

To evaluate the three phase modelling schemes an objective measure is developed in secti
6.5, while techniques used to treat unvoiced speech are presented in section 6.6. Finall

results of informal listening tests are presented in section 6.7.

6.1. Minimum Phase/All Pass Filter Model

One aim of this research is to produce a model capable of accurately representing the harmor

magnitudes{B,}, and phases{6,}. For convenience, these parameters will be combined

into the complex amplitudelsA, } , where:
An = B, (6.1)

As discussed previously, the all pole LPC model is an efficient way to represent the spectra
magnitude information using a small number of parameters. However, normal LPC analysis

constrains the LPC synthesis filter to be minimum phase. There is considerable difference o
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opinion in the literature as to whether minimum phase systems are suitable for modelling
speech. In [41] it is argued that speech signals, in general, are not minimum phase, and th;

moderate order (eg 14th) mixed phase systems are a more suitable choice. In this case, nc

causal AR models were fitted to harmonic model magnitufgg, and phases{6,}

simultaneously. Good results were reported using a 14th order mixed phase model for voice

speech.

It should be noted at this point that several previous authors have used high order minimum
phase systems successfully to model both the harmonic phases and magnitudes. For examg
[22] used a high order (24-28 coefficient) cepstral model, and [24] used a high order (18-32
coefficient) LPC model. The cepstral coefficients were found to fit the magnitude spectrum of
the speech, and the phase determined using the assumption that for minimum phase signals, 1
phase and magnitude are related. The authors reported that lowering the model orde

introduced unpleasant artefacts into the synthesised speech, such as reverberation and mufflir

It is suggested that high order minimum phase systems can approximate the phase spectrum
a non-minimum phase system. However, in the previous chapter we have established that
12th order LPC model is sufficient to represent the magnitude spectrum of the speech, an

raising the order significantly would seem wasteful.

Therefore we require a modelling scheme that can represent non-minimum phase signals with
spectral magnitude component defined by a moderate order all pole LPC filter. Any system,

H(z), can be modelled as the cascade of a minimum phase filter and an all pass filter [5]:

H(2) = Hyn(2 Hy(2 (6.2)

Thus our task is to determine a suitable all pass filter, such that when cascaded with

minimum phase LPC synthesis filtét,,.(z) =1/ A 2 , produces a "close" match to the original
harmonic model parameters. For this analysis the original model paramgtersd w, are
assumed to be known. The modelled parameters may be obtained by satdfg)ingt the

harmonic frequencies:

A= H(e™) (6.3)

91



Chapter 6 - Parametric Phase Modelling

where A = I:%me'ém . A suitable cost function is therefore:
~ |2
E=Y|A.- A, (6.4)

As discussed in the previous chapter, the subjective distortion introduced by LPC modelling of
the spectral magnitudes is small. It is therefore reasonable to ag&umB, , in which case

(6.4) reduces to:

2

E=Y Eﬁ‘é"m — @b (6.5)

It is interesting to examine the harmonic model parameters in the time and frequency domain
Figures 6.2 and 6.3 illustrate the harmonic model parameters for the irgmrdhspignal in
Figure 6.1. Figure 6.4 is the inverse Fourier transform of the harmonic model parameters
denoted as a "prototype" after [40]. This signal is periodi® isamples, several cycles are

plotted in Figure 6.4. Note the strong likeness between the original speech and the time

domain prototype.

Amplitude

- 2 | | | | | | | | |
20 40 60 80 100 120 140 160 180

Time

Figure 6.1: Original Speech

92



Chapter 6 - Parametric Phase Modelling

[0¢]
o

D
o
T
I

Magnitude (dB)
NS
=2

()

500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

o

Figure 6.2: Harmonic Magnitude Samp{es, }

Phase (radians)
e b

1
N
T

500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

o

Figure 6.3: Harmonic Phase Sampjés }

Amplitude
£

- 2 | | | | | | | | |
0 20 40 60 80 100 120 140 160 180 200

Time

Figure 6.4: Time Domain Prototype

Note the strong linear phase component in Figure 6.3. A linear phase shift in the frequenc

domain corresponds to a time shift in the time domain. We can thus model the prototype a
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the time shifted impulse response(n— rb), of a non-minimum phase filteid(z) , wheren,

is the impulse position. This approach is similar to [41]. A related approach is presented in

[19] by considering the vocal tract filtel(z) to be excited by a steady series of impulses
during constant voiced speech. A pitch pulse occurs atrijnvehen all the sine waves in the

harmonic model add coherently.

6.2. Analysis by Synthesis Phase Model

This section describes a first order approximation to the all passHiligz) comprised of a
linear phase component defined by the onset tijmand a phase term specified bgamplex
gain G(w). These parameters can be found using an analysis by synthesis technique, similar t

the codebook search used in CELP.

The modelled complex harmonic amplitudes are defined as:

~_ G(muw,) €M™

A, = AL
Ae™)

(6.6)

This has a phase component:
6, = —arg{A(ejm“"’)] + argﬁG( ”wo)] ~ (6.7)

Both An and ém are defined over the ranga=1,...,L. Note the distinction between the

LPC analysis filterA(z), and the complex sinusoidal model parameféyg .

To produce a real synthesised time domain sigG{b)) is considered to be conjugate
symmetrical about the frequency axis:

_0G,e” w>0

G _
() €7 w<0

(6.8)

where G, is a real positive constant amd is a real constant. Thus the phaseG(to) is

constant for all positive and negative frequencies, but changes sign @t
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For analysis purposes it is only necessary to consider the positive frequenniesl,ie., L.
In this case we represent the complex gain as a con@anG,e”. Equation (6.6) therefore
models the all pass component of the phase spectrum as having a constant cognpandnt

a linear component described Iny. A cost function can be defined in terms of these

parameters by substituting (6.6) into (6.4) w&fmw,) = G:

) 2
Ge "om@o

T AE)

The model parameters can be estimated using an exhaustive analysis by synthesis procedu

(6.9)

similar to that used for CELP codebook searching. For a range of impulse positions,

n, =01...,P—-1, the optimal complex gairG is determined. The error can then be
determined for eacim, by evaluating (6.9). After alh, positions have been evaluated, the

value that minimises (6.9) is chosen, along with the corresponding comple® gain

The range ofn, positions can be limited to the pitch peri®d as the time and frequency

domain forms ofA, are periodic inP = 2w, +0.5] An n, resolution of 1 sample was

found to be adequate by experiment.

The complex gairG for a givenn, can be obtained using a least squares fit (Appendix A.18)

as:
G= ‘Z‘:z (6.10)

where:
a' =[A...A] (6.11)
&’ =[él...éL] (6.12)

¢ = ) (6.13)
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Figures 6.5 to 6.8 illustrate the operation of the analysis by synthesis phase model for a sing|
frame of male speech. A 12th order LPC model was usetifaz). Original magnitudes

are used, so all errors are due to the phase modelling. Figure 6.5 is a plot of the original an
modelled phase spectrums. Note the close match at the low frequency end of the spectrur
but somewhat poorer match at higher frequencies. This effect is also evident in Figure 6.8,
plot of the original and error (modelling noise) magnitude spectrums. The error magnitude

spectrum is defined as:

2

2 A~
E(m] =|A- A (6.14)
for m=1,...,L. The low frequency, high energy regions of the spectrum have a smaller error

than the high frequency, low energy regions. These effects are due to the error energ

minimising properties of the cost function, equation (6.9).

Figures 6.6 and 6.7 show the original and modelled prototypes, note the close match in thes
time domain waveforms, due to the error energy minimising properties of the cost function.
The low energy, high frequency error energy is less visible in the time domain plots than the

error magnitude spectrum in Figure 6.8.

Phase (rads)

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 6.5: Original (solid) and Modelled (dashed) Phase Spectrum
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Figure 6.6: Original Prototype
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Figure 6.7: Modelled Prototype
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Figure 6.8: Original (solid) and Error (dashed) Magnitude Spectrum
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6.3. Truncated DCT Phase Model

This section presents another approach to the phase modelling problem. In this case tr
synthesised speech is modelled as a cascade of a minimum phase LPC synthesis filter and an

pass filter. The system is excited by a unit impulse at tiyjeand the modelled complex

amplitudes are recovered by sampling the modelled spectrum at the harmonic frequencies. Tt

all pass filter is defined by its phase spectrum, a function of frequency.

The modelled complex harmonic amplitudes are defined as:

. ge—jmwon0 Hap(é'mwo)

M)

=1. The LPC filter coefficients and gaim can

(6.15)

where g is a real gain factor admap(ejmwo)

be found using standard time domain LPC analysis. For this phase modelling technique, wi
assume that the LPC model represents the harmonic magnitudes adequately, therefore a cc

function of the form (6.5) can be used.

This phase model is defined by the parametgrand H,(z). Note that compared to the

previous section, the gain factagonly describes the magnitude of the system, not the
magnitude and constant phase term. In this case, the constant phase component is absort

into the all pass filteH_,(z) .

The phase model parameters can be sub-optimally found using a sequential process. First tl

dominant linear phase component describednpyis removed, and the remaininghase

residualcomponent modelled using,,(2) .

To determinen,, a cost function can be defined that represents the modelled phase as the LP(

synthesis filter excited by the shifted impulse (ie we have removed the all pass filter for this

stage of the minimisation):

. 2
~JMwy Ny

)

E(n,) = nZl B % d% - A(eimwo) ‘ (6.16)
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Note the normalising tererA(z)|, this is included as we are interested in only the phase of
1/A(2). The impulse positionn, is determined by sampling (6.16) in the range

n, =01...,P—1to determine the minima. The phase residgatan then be determined as:

é'moo0 0
P = arg%%)m (6.17)
El B

for m=1...,L. As the dominant linear component has been removed, the dynamic range of
{gom} is generally much smaller than that of the harmonic ph&g}s. More importantly, for
voiced speech, adjacent values in the{seﬂt} are usually highly correlated. This suggests that
higher coding efficiencies may be obtained by codipg} than{6,}. The phase residual

spectrum{gom} is plotted (solid) in Figure 6.9. Compare this to the original phase spectrum

from the same frame in Figure 6.5.

The phase residual spectrum can be considered to be the ideal phase speldgptﬁn) ofThat

is, if we can devise a method to model the phase residual perfectly, then we can reconstruct tf

original phases.

The high correlation of the phase residual suggests that a decorrelation procedure might b
used to compactly model this signal. The Discrete Cosine Transform (DCT) was therefore
employed, due to it's well known near optimum decorrelation properties [7]. The following

form of the DCT was used:

= 2m+ k(]
V(k)=zog0mc(k)cow k=01,.L-1 (6.18)

V(k) represents the DCT af,, and c(k) is defined as:

1 k=0

C(k)_%/i k=12...L-1 (6.19)

The Inverse DCT (IDCT) is defined as:
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Zv(k):(k)coslé(%@nzo,L...,L—l (6.20)

Prnss =

|~

The DCT coefficientsV(k) of the phase residual in Figure 6.9 are plotted in Figure 6.10.

Note the dominance of the low order coefficients at the left hand side of Figure 6.10, indicating

a highly correlated signal. A reasonable assumption is that a subset of the DCT coefficients:

k) k<
v(@:%” k:g (6.21)

where C < L may be sufficient to represent the phase residual. The modelled phase residua
obtained from the truncated DCT coefﬁcier‘ﬁf@k) (with C=5) is plotted (dashed) in Figure
6.9. The modelled phase residual is a smoothed version of the original phase residual, due

the truncation of the DCT coefficients. The general shape of the original phase residual is

preserved.

Phase Residual (rads)
o 5

o
T

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 6.9: Original (solid) and Truncated DCT modelled (dashed) Phase Residual Spectrums
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Figure 6.10: DCT Transform of Phase Residual
4
x 10
2 T T T T T T T T T

Amplitude

60 80

100 120 140 160
Time

Figure 6.11: Original Prototype
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Figure 6.13: Original (solid) and Error (dashed) Magnitude Spectrums

The effectiveness of this phase modelling scheme can be gauged by examining the modelle
prototype in Figure 6.12 and the error magnitude spectrum in Figure 6.13. Both figures
indicate that this scheme performs poorly. Truncating the DCT coefficients does not take intc
account the relative importance of different parts of the spectrum. For example, high energ
regions of the spectrum contribute a larger error energy for a given phase error than low

energy regions.

6.4. Weighted Polynomial Phase Model

The previous section highlighted the need for a phase modelling scheme that takesontd
the relative error contribution of different parts of the spectrum. antadysis by synthesis
phase modelling technique (first scheme presented) is such a method, however this scheme

limited to a first order approximation of the phase spectrum (linear plus constant phase term).

This section introduces a third phase modeling scheme that fiteighted K" order
polynomial to the phase residual spectrum. The polynomial fit is weighted to provide a better
fit in perceptually important high energy areas of the spectrum than in low energy areas. Ir
other respects, this scheme is similar to the truncated DCT technique, an impulsergt time
excites a cascade of a minimum phase LPC synthesis filter and an all pass filter. However il

this case, the all pass filter phase spectrum (phase residual spectrum) is describiéd! by a

order polynomial.
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As in the previous section, a two stage analysis procedure is employed. First, the dominar

linear phase term described hy is removed to obtain the phase residual san{m#. This

procedure is described in the previous section. NextKtherder polynomial is fitted to the

the phase residual samplg, } .

To derive the polynomial fitting procedure a cost function in the form of (6.5) is used.

E= (6.22)
Expressing in terms of the linear phase and phase residual components:
L . . . y2
rb @, -,<0L = Z e’”°m“’°(é“’m - é"m) (6.23)
which can be reduced to:
. . L 2| o G
E(qol,...,qoL) = Z B¢ - d*r (6.24)

as the linear phase component has unit magnitude. Expanding (6.24) for positive and negativ

sides of the spectrum (and assuming the DC t8ym 0):

2E(@ ) = ZL B[/ - é?"mz+§1 g - (6.25)
m=—1 =
Due to the conjugate symmetry of the phases it can be shown that:
E(¢.-.0.)= 22 Bﬁ(l— cos(qom—gbm)) (6.26)

A similar result is presented in [42]. For small angles, a first order Taylor series approximation

for cogx) is:

cogx) =1—X? (6.27)
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This approximation is coarse for large angles, however it allows a tractable solution to the leas
squares problem, and as will be shown, produces good results. Substituting this approximatio

into (6.26) leads to an elegant least squares expression:
L ) . 2
E=Y B (0n-0n) (6.28)
=

Thus to minimiseE, the error between the original and synthesised prototypes, we must

minimise the squared phase error weighted by the energcbfharmonic. Consider the"

order polynomial approximation t@,,:

~

@,=C,+cm+ g ni+.+ ¢ mM (6.29)

The error at then” harmonic can be expressed using vectors as:

& =B, (0, -p(m)'c) (6.30)

where:
¢’ =[co ] (6.31)
p(m)" =[1mni... nf] (6.32)

It is possible to express the error at all harmonics:

e= Bqg- BMc (6.33)
where:
B O
ad ad
ad B, 0 ad
B=0O U (6.34)
ad 0 ad
ad ad
g B, 5
a =[e.0,...0] (6.35)
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e’ =[e...q] (6.36)
@(QTS
®(2) O

M=9i g (6.37)
g : 0
0" O
#(L)'H

Comparing (6.33) to (6.28) we can see that minimidihgs equivalent to minimisinde] .
Using the results in Appendix A, we can see that minimiggs the "best-fit" solution to the

over determined set of equations (6.33). From equation A1.8, this solution is:
c=(MBBM) "M B Bq (6.38)

This expression can be reduced to the problem of solving the matrix equation:

Rc=u (6.39)
whereR is aK +1 by K +1 matrix:
R=M'B'BM (6.40)
R Z B (6.41)
i = : '

andu is aK +1 element column vector:
u=M'B'B (6.42)
L 5 )
u; = Z Bgi (6.43)
Figures 6.14 to 6.17 illustrate the operation of the weighted polynomial phase modelling

technique. The model order ik =4. Note the close match between the modelled and

original phase residual in Figure 6.14 in the high energy areas. Also, the original and modellec
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prototypes in Figures 6.15 and 6.16 are very similar. Figure 6.17 shows that the error energ

is suppressed in the high energy formant regions.
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Figure 6.14: Original (solid) and Modelled (dashed) Phase Residual
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Figure 6.15: Original Prototype
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Figure 6.16: Modelled Prototype
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Figure 6.17: Original (solid) and Error (dashed) Magnitude Spectrums

6.5. Objective Results

To quantify the relative performance of the 3 phase modelling schemes, a Signal to Noise Rati
(SNR) measure was devised. This measure determines the signal to noise (error energy) rat

for each frame:

L
1 2% g
SNR=10l0g;o 1 : e 0 (6.44)
Bm(l— em—em)
Ezr; cos( ) E

which is measured in dB. It is important to note here that this measure is only used to evaluat

the error contribution of modelling the phases, the magnitt{(B;;'} are assumed to be

modelled perfectly. Average SNR values were determined for a test database of 2 male and
female speakers, a total of 2400 frames of clean (no additive noise) speech. The results a
tabulated in Table 6.1.

These results support the examples given in the previous sections of this chapter for the
schemes. The analysis by synthesis and weighted polynomial schemes appear to perform qui
well, whereas the truncated DCT scheme does not. The weighted polynomial scheme show

steady improvement as the polynomial order increases.
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Model Order SNR (dB)
Analysis by Synthesis n/a 6.53
Truncated DCT C=5 2.77
Weighted Polynomial K=2 5.86
Weighted Polynomial K=3 7.43
Weighted Polynomial K=4 8.54

Table 6.1: Average SNR Results for Phase Modelling Schemes

The average SNR values are fairly low as the results are averaged across the entire te
database which includes many silence and unvoiced frames. In these cases the SNR is usua
very low which drags the average SNR down. In strongly voiced frames, the SNR can be

quite high, typically between 10 and 20 dB.

6.6. Unvoiced Speech

Initial listening tests during development indicated that the phase modelling schemes performe
quite well for voiced speech but introduced harsh periodic sounds during unvoiced speech
which were perceptually very annoying. This is because for unvoiced speech the phases ai
generally random. All of the phase modelling schemes developed assume a measure ¢
correlation between adjacent phases and force this correlation onto the modelled phases, th

introducing periodic artefacts into synthesised unvoiced speech.

To improve the quality of unvoiced speech, a simple two band voicing model was used. This
model randomises the phases above a transition harmonic, and uses the phase model bene

the transition harmonic. The transition harmonic is determined using a rule based approach:

_[L(SNR/TSNR<T

= 6.45
T S_SNR>T (6.45)
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Where T is the threshold at where unvoiced energy starts to be introduced. As the SNR
decreases, more and more unvoiced energy is introduced, until the whole spectrum i

unvoiced. The threshol@ was chosen by experiment to be 5 dB.

As discussed in section 5.1 the addition of a voicing model is necessary only for the phase
models considered in this chapter. The baseline unquantised generic coder does not implicit|

require a voicing model.

6.7. Informal Listening Tests

With the voicing model incorporated, the quality of the three schemes could be evaluated usin
informal listening tests. Four test utterances were used, two male and two female. Of these
one male and one female were clean speech, the other male and female were corrupted by
moderate amount of periodic background noise to simulate a mobile acoustic environment
The 3 models were compared to the baseline coder and a VSELP simulation. High quality

headphones were used for replay.

Informal tests using several listeners agreed that the high order weighted polynomial generall
performed better, although the analysis by synthesis scheme was often very close. Th
truncated DCT scheme performed poorly, with very rough speech emerging from some voicec

sections.

The general conclusion was that for clean speech the analysis by synthesis and weighte
polynomial phase models were superior to VSELP, however for speech corrupted by
background noise the quality was about equal to VSELP. All of the phase modelling scheme:
were inferior (in varying degrees) to the baseline coder, which for clean speech was almos

transparent.

The main artefacts appear to be related to the two band voicing model. For example, som
unvoiced sections still have audible periodic artefacts, and "rough” background noises car
occasionally be heard in voiced sections. Both of these problems indicate occasional incorrec

voicing decisions.
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7. Quantised Sinusoidal Coder

This chapter describes the development of a quantised sinusoidal coder based on th
techniques developed throughout this thesis. The main purpose of this coder is to tie togethe
the techniques presented in this thesis. It should be stressed that the coder is not optimised a

therefore not illustrative of the final quality possible from sinusoidal coding techniques.

LPC LSP )
—P Analysis —» Quantisation {w"G}
{a. G}
{9
Recover
) —» (R)
18]
. , ——» n
Generic Analysis by °
—» Sinusoidal .—p| synthesis Phase——» ¢
Analysis {9m} Modelling L
—> L,
A
4 > W,
wO
NLP Pitch
> Estimation

Figure 7.1: Block Diagram of Quantised Sinusoidal Encoder

Section 7.1 describes the operation of the quantised coder, and presents the techniques usec
guantise the various parameters, section 7.2 describes the training procedure and results fi
the LSP quantisers. Section 7.3 evaluates the effects of the various stages of quantisation
the performance of the coder using objective measures and informal subjective testing. Speec
fles are available via the internet which demonstrate the various stages of quantisatior

(Appendix B).
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7.1 Quantised Coder Operation

Figure 7.1 illustrates the quantised sinusoidal coder operation. Impexﬂsp(n) is used to
determine the fundamental frequency for the current 10 ms fragnasing the Non-Linear

Pitch (NLP) algorithm described in Chapter 4. The speech is then modeled using the

sinusoidal analysis algorithms developed in Chapter 5, however in this case only the harmoni
phases{@m} are required, as the spectral magnitudes are determined using the LPC spectre

modeling method also described in Chapter 5.

Parameter Symbol Bits/Frame  Bits/s
Line Spectrum Pairs {wi} 52 5200
LPC Gain in dB Gys 5 500
Fundamental Frequency W, 8 800
Phase model impulse position Ny 8 800
Phase model phase of complex gain Y 5 500
Phase model voicing transition frequency L; 5 500
Total 83 8300

Table 7.1: Bit allocation of Quantised Coder

Note that the LPC analysis produces both spectral shape information in the form of LPC
coefﬁcients{ak} , and a scalar gain parameter expressed iBgB Quantisation of the LPCs

is achieved by converting the LPC coefficients to Line Spectrum Pairs (LSPs), and scalar

guantising each LSP. The LSP quantiser design is described later in this chapter. The LP¢

gain is uniformly quantised in the log domain. The recovered RMS spectral magl{iéq}es

are then used with the phases from the sinusoidal an@@/,ﬁ}s as the “target” for the phase

modeling process.
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The Analysis by Synthesis phase modeling scheme was chosen for the quantised coder due
the ease of quantisation compared to the Weighted Polynomial scheme. The parametel
determined by the phase modgl ¢ (the phase of the complex gain term), and the voicing
transition parametek,. are all scalar quantised. Note that the magnitude of the complex gain

term does not need to be transmitted, as this information is conveyed by the LPC gair

parameter discussed above.

The quantised parameters sent to the decoder and the bit allocations are summarised in Tal
7.1.

The parameter§,;, w,, ¢ and L, are linearly quantised using a similar method. We wish

to x

min max *

to represent a real numberwith a b-bit integer codec over the range

D X_Xmin +0-

l
= %% 5[2’ 7.1
© max Xmin D ( )

The quantised valu& can then be recovered from the code:

c

X=2b

(Xmax - Xmin) + Xmin (72)

Table 7.2 lists the parameters for each of the four linear quantisers used in the quantise

sinusoidal coder.

Parameter Symbol b Xonin Xinax
LPC Gain in dB Gys 5 200 60.0
Fundamental Frequency W, 8 50 Hz 400 Hz
Phase model phase of complex gain ¢ 5 -7 m
Phase model voicing transition frequency, 5 1 L

Table 7.2: Linear Quantiser Parameters
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7.2 LSP Quantiser Training

The scalar quantisers were trained using a 22 minute database extracted from the TIMIT CD
ROM. Vectors of 12 LSPs were determined at 10 ms intervals, scalar quantisers were the
developed for each quantiser using the Lloyd-Max [52] training algorithm. The bit allocation

was adjusted experimentally to minimise the average Spectral Distortion (SD) over a 24
second test database of two male and two female speakers. The test database material v

from outside the training database. The SD for a given frame is defined as [59]:

Ngi —1

SD,, = \/N— > (2010, A(K) - 2010g,{ (K| (7.3)

where A(k) and A(k) are defined as th&l,, point DFTs of the original and quantised LPC

coefficients. It is widely accepted [51] that for transparent quantisation of LPC parameters:
* The average SD must be less than 1 dB.

» Less than 2% of frames must not have an SD greater than 2dB.

* No frames must have an SD greater than 4dB.

Using the 24 second test database, quantisers of several bit allocations were tested. It w:
found that a quantiser with a 4,5,5,5,5,4,4,4,4,4,4,4 bit allocation for LSPs 1 to 12 gave result:
close to those required over the 24 second test database. The average SD results for seve
test databases are presented in Table 7.3. The first row is the 24 second database used

experimentally deriving the bit allocation.

Note that the LSP quantiser performs poorly for speech data outside of the training databas
despite the relatively high bit rate of 52 bits/frame. This is perhaps due to different recording
conditions or spectral characteristics in the test databases, and highlights the need for trainin

material from several different sources/recording conditions.
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Description Frames AverageD,; >2dB(%) > 4dB(%)

24 second, 2 male, 2 female2400 1.05 3.58 0.06

Australian accent

60 second, mixed male an@®000 1.35 19.14 1.83

female, English accent

120 second, mixed male and2000 2.31 49.45 13.76

female, BBC radio broadcast

20 seconds from within training2000 0.82 1.65 0.00
database (TIMIT CD-ROM)

Table 7.3: LSP Quantiser Test Results

7.3 Quantised Coder Testing

This section describes the objective and subjective testing of the quantised sinusoidal code
(see also section 3.9). To evaluate the objective effect of the various quantisation stages,
SNR measure is proposed that is similar to the SNR measures used in sections 5.3 and 6.
The SNR measure in section 5.3 was derived to test the spectral magnitudes and henc
considered magnitudes only. The SNR measure in section 6.5 was derived to test the pha:
modeling and hence considered phase distortion only (weighted by the magnitude of eacl
harmonic). The SNR measure below considers both magnitude and phase, and is compatib

with both of the earlier measures:

O o 2 U
o YA D
SNRg = 10|0910D|_m:1—25 (7.4)

S (r2)

where{An} are the complex harmonic sinusoidal amplitudes for the current frame such that

H

A =B, €. Note that this expression reduces to the earlier SNR expressions presented i
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sections 5.3 and 6.5 if the phases or magnitudes are considered to be unchanged by t

modeling/quantisation under test.

Condition Average SNR (dB)

Test | LPC LSP Phase PhaseQ G+w, Q

A X 15.73
B X X 12.03
C X 6.12
D X X 5.50
E X X X 4.07
F X X X X 3.76
G X X X X X 2.40

Table 7.4: Sinusoidal Coder Quantisation Objective Test Matrix

Option Description

LPC 12th order LPC modeling of spectral amplitudes
LSP LSP quantisation of LPC model
Phase Analysis by Synthesis phase modeling

Phase Q  Quantisation of A by S phase model paramejgys, and L;

G+w, Q Quantisation of LPC Gain term and fundamental frequency

Table 7.5: Definition of Quantisation and Modeling Options

For a database of 2400 frames comprising two male and two female speakers a range «

guantisation and modeling conditions were tested using the objective measure, and tabulated
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matrix form in Table 7.4. The presence of an ‘X’ indicates which quantisation options are

switched on for each test. The various quantisation options are explained in Table 7.5.

A steady decrease in average SNR is observed as the various quantisation options are enabl
with a large drop evident when the Analysis by Synthesis phase modeling is switched on. The

reasons for this large drop are discussed in section 6.5.

Subjective testing was performed by informally evaluating the speech synthesised under th
conditions listed in Table 7.4 over the 24 second (2400 frame) database of 2 male and twt
female speakers. High quality stereo headphones were used for the tests. Results indicate tt
tests A and B produced synthesised speech of relatively high quality, close to the baselin
coder. The LSP quantiser (test B) produced no additional subjective distortion compared tc
LPC modeling alone (test A), indicating that for this test database at least, LSP quantisel
performance is acceptable as predicted by the SD tests in the previous section. In this case t
SNR measurements that suggest a significant drop in quality between test A and test B do nc

correlate with the subjective results.

Phase modeling alone produced synthesised speech roughly equivalent in subjective quality t
VSELP. However, when LPC modeling and LSP quantisation was applied to the phase
modeled coder (test E), the speech quality dropped significantly. The drop in subjective
quality is much larger than when the LPC and LSP options were applied to the coder before
phase modeling. This is perhaps due to some dependence of the phase model on the integr
of the LPC parameters, which are used to obtain the minimum phase component of the phas
model. Another possibility is that the quantised LPC parameters upset the rather delicate
balance of the voicing model constants, which were experimentally derived with LPC

modeling/quantisation switched off. Section 8.2 discusses possible ways to improve the qualit
of the coder. The final two quantisation steps (tests F and G) produced no further decrease

subjective quality.
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8. Conclusions and Further Work

In the preceding chapters, several original techniques suitable for sinusoidal speech codin
were presented. Section 8.1 summarises the work presented in this thesis, and highlights a
compares the original contributions to the current state of the art. Finally, several areas fo

further work are presented in section 8.2.

8.1 Significance of New Work

Time and frequency domain speech coding techniques were introduced in Chapters 2 and
These chapters presented background information, including discussions of several time an
frequency domain coding techniques, and the mathematical framework necessary fol
presenting the original contributions in later chapters. Several minor contributions were

presented in these chapters, including:

* In Section 2.5.3 an analytical discussion of the CELP analysis by synthesis codebook
search, including a mathematical treatment of filter memory effects. Although the practical
use of this information is widely known, no equivalent treatment has been found in the

literature.

* In Section 3.4 a derivation of the MBE (3.19) and harmonic sinusoidal (3.16) analysis
equations. Results similar to those obtained from this analysis have been previously
published, but equivalent derivations have not been found in the literature, although
alternative derivations have been presented for the sinusoidal analysis equations. Thi
work derives the MBE and sinusoidal equations using the same framework, thus

illustrating the similarity of the two models.

* In section 3.7 qualitative arguments demonstrated that due to assumptions of short terr
stationarity over 10-30 ms intervals, problems can occur in the parameter estimation
techniques used for harmonic sinusoidal and MBE coders. For example a changing
fundamentalw, across the frame can “smear” the high order harmonics across the
frequency axis, causing spectral magnitude and voicing estimation errors for MBE coders.

Transition frames (those containing onsets or voiced/unvoiced changes) can also caus
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partial or complete breakdown of the parameter estimation algorithms. These observation:
lead to the selection of a short frame update rate for the generic sinusoidal coder presente

in Chapter 5. No equivilent treatment of this subject is known to the author at this time.

Chapter 4 presented the NLP pitch estimation algorithm. This algorithm has two original

features:
* The use of a square law non-linearity as a basic pitch extractor.

» Post processing of the resulting pitch candidates using a second pitch estimation algorithm

in this case the MBE pitch estimation algorithm.

The algorithm was carefully designed and tested using three different methods, (objective
contour and subjective) over a range of speech sources with good results. Another origine
contribution was the analysis of failure modes and suggested improvements including a simpl

tracking algorithm.

While other pitch estimators use the same basic pitch extractor/post processing structure of tr
NLP algorithm, it has several unique features. A survey of existing pitch estimation algorithms
suggests that no other algorithms in the literature use a non-linearity combined with a secon
pitch estimator for post processing. The non-linearity is used specifically to enhance the
fundamental through the superposition of difference tones produced by harmonic distortion.
Although this effect is widely known [4] it's use is uncommon in current, state of the art pitch

estimation algorithms.

The testing of the NLP algorithm involved the use of a high quality unquantised sinusoidal
coder algorithm. Often, pitch estimation algorithms are associated with communications
quality [30] or synthetic quality (eg LPC) vocoders. In these coders, pitch detector errors are
often masked by other artifacts in the coding process, thus subjective tests of pitch detecta
performance based on speech quality may have a lower “resolution” than if the same pitct
detector was tested with a high quality coder. The high performance of the unquantised
sinusoidal coder presented in this thesis demonstrates the reliability and robustness of the NL

pitch estimation algorithm.
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Chapter 5 presented the high quality unquantised sinusoidal coder. This coder is related t
existing sinusoidal and MBE coders, however the techniques used in the analysis, synthesi

and spectral modelling stages differ from those commonly used in the literature as follows:

* The use of a 10 ms frame rate to provide good transient response to non-stationary speet
segments. This frame rate has been used in some of the earlier, non harmonic sinusoid
coders [17], however all recent harmonic sinusoidal and MBE coders employ frame lengths

of 20 ms or longer.

* The use of an RMS spectral magnitude mea{sﬁm} that is relatively insensitive to errors

in fundamental estimation and the voiced or unvoiced nature of the energy in the current

band compared to the traditional MBE and sinusoidal estimation techniques.

» The use of harmonic phases to convey voicing information, which removes the need for a
voicing estimator in the unquantised generic sinusoidal coder. This feature has been use

in earlier, non-harmonic sinusoidal coders [17], but not in harmonic sinusoidal coders.

* An RMS average method of spectral magnitude recovery from LPC models that provided
an efficient means of modelling the spectral magnitudes with a moderate order LPC mode
while maintaining high speech quality. This method is considerably lower in algorithmic

complexity compared to other schemes (summarised in section 5.3) found in the literature.

Informal listening tests through high quality headphones indicated that the speech quality
obtained from the generic coder was very high, almost transparent in many cases. The LP!

modelling introduced a small amount of distortion, however the overall quality remained high.

The phase modeling techniques presented in Chapter 6 apply a voicing measure to the cod
but this is not fundamental to the operation of the unquantised coder, unlike other algorithms
such as MBE [28]. For example, other phase modeling/quantisation algorithms could be

employed (eg vector quantisation [60]) that do not require voicing measures or decisions.

Chapter 6 presented three original phase models, of which two were shown to be capable «
adequately representing phase by the ability to reproduce good quadithspPhase is usually
ignored in sinusoidal and MBE coders, often discarded at the analysis stage and thel

reconstructed at the decoder using heuristic techniques [28]. Very few authors have attempte
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to introduce parametric phase models, although several have presented combine

phase/magnitude parameteric models [41][42][43][67].

The basic assumption was that the phase spectrum could be modelled as the cascade o

minimum phase filter and an all pass filter, excited by an impulse atimén all cases a LPC

filter provides the minimum phase component, while the various phase models attempt to

model the phase residual, or all pass component. The three phase models where:

» TheAnalysis by Synthesimmodel, where an impulse with a consteoimplexgain excites

an LPC synthesis filter at time,. In this case the pulse position provides a linear phase

term, and the angle of the complex gain term provides a constant phase term. Thus the &
pass filter can be considered a 2nd order polynomial (straight line) approximation to the
phase residual spectrum. The parameters of the phase model are determined using
analysis by synthesis loop, similar to CELP or multipulse algorithms. This method

produced good quality synthesised speech.

 The second phase model usédincated DCTCoefficients to represent a smoothed
version of the all pass filter phase spectrum. The motivation for this was that for voiced
speech, the phase spectrum is smooth after removal of the dominant linear componen

caused by the excitation instam,, thus the DCT was used to decorrelate the phase

residual spectrum and transmit only the low order DCT coefficients. However, this
produced significant distortions in the synthesised speech. This was traced to it inab
of the method to take into account the magnitude of the various spectral components whe

fitting the phase model, unlike the analysis by synthesis phase model.

« This provided the motivation for th&eighted Polynomigbhase model, which usedkd"
order polynomial fit to the phase residual spectrum. By using an approximation, it was
shown that a tractable least squares solution could be found to fit the polynomial while
taking into account the relative importance of each phase based on the magnitude of th

spectrum at each harmonic frequency. This method also provided good quality speech.

All of the phase models assumed a certain correlation in the phases of adjacent harmonic
which is true for voiced speech. However, to deal with unvoiced speech, a simple voicing

model was introduced, so that the three phase models could be evaluated for real spee
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signals. Overall, the weighted polynomial scheme performed best, however in many cases th

analysis by synthesis scheme came very close.

Finally, chapter 7 combined the techniques presented in this thesis to produce a fully quantise
8.3 kbit/s coder. This coder used a 12th order LPC model quantised with LSPs, and the
analysis by synthesis phase model. The effects of the various quantisation and modelling stagt
were analysed using objective and informal subjective methods. Although the amplitude anc
phase modelling/quantisation stages work well when separated, some degradateetin sp

quality was observed when they were combined. The reasons for this degradation are at th

stage unclear, however they provide plenty of scope for further work (see below).

A discrepancy between subjective and objective results was noted, the objective result:
suggesting poorer performance than perceived using informal subjective tests. As discussed
section 3.9 of this thesis such differences in objective and subjective measure performance al
common in speech coding research due to thdiigadd simple objective distance measures to

exactly model human perception of speech signals.

8.2 Further Work

One of the main features of the NLP algorithm is the two stage basic extraction/post
processing concept, where a basic pitch extractor provides a set of candidates which are test
by sampling another pitch estimator. It would be useful to implement this technique using

pitch estimator combinations other than NLP/MBE and compare results.

In vocoder algorithms such as sinusoidal/MBE pitch estimation is usually performed “open
loop”, for example the pitch is estimated, then passed to the next analysis stage as an inpL
This differs from CELP-type analysis by synthesis coders that typically extract the pitch using a
closed loop search. The closed loop search effectively determines the effect of a set of pitc
candidates on the next analysis stage, then chooses the pitch accordingly. It is suggested tha
vocoder pitch estimation algorithm could also be implemented in an analysis by synthesis
fashion, perhaps by evaluating a set of basic pitch extractor candidates using the vocode

analysis and modelling stages, and comparing the resulttsfo the original.
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A significant problem with the phase models presented in this thesis in the inability to deal with
unvoiced harmonics, all of the models assume some degree of correlation in adjacent phas
residuals which force a voiced structure onto the modelled phases. This was overcome for th
purposes of listening tests by introducing a crude two band voicing model, however a phas
scheme that can deal with voiced and unvoiced speech without the need for an external voicir

estimator would be a more robust approach.

The LSPs consume a large portion of the quantised coder bit rate, this could be reduced &
exploiting time domain correlation in adjacent 10 ms frames, and using vector quantisation of
LSPs. Given many references cite less than 25 bits/frame for 10th order LSP quantisers [51]
should be possible to achieve less than 30 bits/frame for a 12th order quantiser. The poc
performance of the quantiser outside of the training database highlights the need for careft

guantiser design using a training database obtained from more than one recording condition.

The objective and subjective testing of the quantised coder suggests the analysis by synthe:
phase model is sensitive to quantisation and modelling of the LPC coefficients. This may be
due to distortions introduced into the quantised LPCs that affect the ability of the phase mode
to match the original phases, or problems with the voicing estimator and should be investigates

further.
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Appendix A

Al.1 Solving Overdetermined Systems using Orthogonal Projection

In many parameter estimation problems we wish to minimise some cost function with respect
to a set of parameters. After manipulation, this often reduces to a setegtiations anah
unknowns, such thamn> n. In these cases no exact solution is possible, however a "best fit"
solution in terms of minimum squared error may still be obtained. This appendix presents &
generalised derivation of least squares minimisation from a linear algebra point of view [45].
Although similar results may be obtained using calculus, linear algebra provides a more elegar

extension to overdetermined systems containing complex numbers.

Consider an overdetermined systermofequations aneh unknowns, such than> n:

X%t A%ty x =0
A Xt A Xt Ay, X = b

(A1.1)
By X F B Xt F 8oy X, = By
Expressing this system in matrix form:
Ax =b (A1.2)
where:
(B & .-r By B
a=On %2 7 g (AL3)
0: : U
%‘ml amZ amnE
x=[% % ... %] (A1.4)
b=[b, b, ] (AL5)
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The above equations describe a system where there are more equations than unknowns.
most cases no exact solution is possible, instead we must determine the solutioAxettior

be as "close" as possible in a mean square error sense to the targeb vector

The optimum solution will lie in the subspe spanned by the columns Af This subspace
can be viewed as all the possible linear combinations of the columAs ofhe optimum
solution, x, will be the point on the columnape ofA that is closest td. This point occurs
where the error vectoe= Ax-b is orthogonal to the column space Af and is known as

the projection ob onto the subspace. This situatiolistrated in Figure A1.1.

Closest point in subspace to

>

N

Column space oA

Figure Al1.1: Orthogonal Projection bf onto Column Space &

Thus for any overdetermined systefix =b the best solutiorb, in a least squares sense is

when e is orthogonal toAX :

e"Ax=0 (A1.6)
(b-Ax)"Ax =0 (AL.7)

which gives a solution vector:
x=(ATA)"ATo (AL.8)

which in effect chooses to minimise|e]”.
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Al.2 Extension of Orthogonal Projection to Complex Numbers
In real linear algebra we define the length of a vector:
I|? = x" x (A1.9)

There is a close geometric relationship between the length of a vector and it's inner product
To maintain this relationship for complex numbers, the first vector in the inner product is

usually conjugated [45]:
|7 = x" x (A1.10)
where X is how complex and:

T (A1.11)

X
]
Xl

The same rules can be applied to the inner product of two different complex vectors:
(a,by=a"b (A1.12)

This definition of the length of complex vectors enables least squares problems involving
complex numbers to be solved using orthogonal projection in a more meaningful way than

techniques involving calculus.

Consider the least squares fit applied to lineK irdimensional complex space, defined by the

cost function:

E=gl|s(k)— GW K (A1.13)

Expressed in vector form:
E =|s- Gw{’ (Al.14)
wheres andw are complexK element column vectors:

s'=[91) £2)... $ K] (A1.15)
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w' =[W(1) W2)... W( 1)] (A1.16)

and G is a complex constant. The problem is illustrated graphically for the two dimensional

real case in Figure Al1.2

> S

Gw
Figure Al.2: Orthogonal Projection sfonto w

Note that this case is similar to that presented in section Al.1, except that in this case
lef? =[s— Gw|* is minimised by adjusting a single complex coefficight In this case the

column space of the systeBw is the single column oK dimensional linew .

The optimum solution occurs when is orthogonal taGw :

e'Gw=0 (A1.17)
_s'w
G= A (A1.18)
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Demonstration Speech Files

Speech files that demonstrate the various algorithms presented in this thesis are available v

the internet. The page:
http://www.itr.unisa.edu.au/scrc/speech/index.html

contains instructions on how to obtain and listen to the speech files. The files available are

summarised in the fildemo.txt which is listed below.

DEMO FILES FOR THESIS

David Rowe, 17/3/97

The files listed below demonstrate the techniques developed for the
thesis. They are organised into a suggested listening order. The source
file hts.wav contains 8 sentences, (4 speakers, 2 sentences each).

It is recommended that the files be broken up into smaller files for the
purpose of comparative listening. For example, when comparing two files,
just listen to one 3-second interval, such as the first 3 seconds of hts.wav
and htsuq.wav, rather than the entire 24 second file.

Chapter 5 - Generic Sinusoidal Coder

hts.wav original
htsug.wav baseline unquantised generic coder as developed in Ch5.
htsa.wav spectral magnitude modeling using RMS average method

htsal.wav spectral magnitude modeling using sampling method.

Chapter 6 - Parametric Phase Models

hts.wav original

htsug.wav baseline unquantised generic coder as developed in Ch5.
htspl.wav A by S phase model

htsp2.wav Truncated (5 coefficients) DCT phase model

htsp3.wav K=4 Weighted Polynomial phase model

htsv.wav 1S54 VSELP provided for comparison

mmtl.wav Original truck noise corrupted speech

mmtl.wav Baseline coder

mmtlpl.wav A by S phase model - note background noise cf mmtl.wav
mmtlp3.wav Polynomial phase model - note background noise cf mmtl.wav
mmtlv.wav 1S54 VSELP for comparison

Chapter 7 - Quantisation

hts.wav original

htsug.wav baseline unquantised generic coder as developed in Ch5.

htsx.wav where x = a,b,...,g see table 7.3. Coder in various stages
of quantisation (Ch7)

htsv.wav 1S54 VSELP provided for comparison
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Informal Subjective Testing Methodology

Throughout the research described in this thesis, informal subjective tests (defined anc
discussed in section 3.9) have been used to evaluate the various algorithms. The methodolot
used was to carefully listen to the decoded speech from the algorithm under test using file:
from a relatively small test database. Although small, the database includes a range of differer

speakers, listed in Table C.1.

File Description Length (seconds)

hts.spc 2 Australian male, 2 Australian female, 2 24

sentences each

spkdatl.spc 25 British male and female speakers, 1 sentence 52

each
rl.spc BBCL1 radio news, 3 speakers, swift speaking 120

Total 196

Table C.1: Informal Subjective Testing Database

Evaluations of the algorithm under test were made on a comparative basis, for example th
original (uncoded) speech was compared to the unquantised sinusoidal coder speech |
Chapter 5. Comparisons were made on short (approximately 3 second) segments at a time, f
example the first sentence of hts.spc would be compared using the algorithm under test and tt
reference condition for that test. The subjective evaluations were made by the author using

“sound blaster” PC based replay system with both headphones and hi-fi speakers.

Usually, results were evident by listening to just a few utterances, in most cases the result
were similar across the entire test database. When the subjective quality of the two utterance

was not clearly different, a result of no difference was noted.
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