Low Band Receiving Antennas

AP 0

(on a city lot)

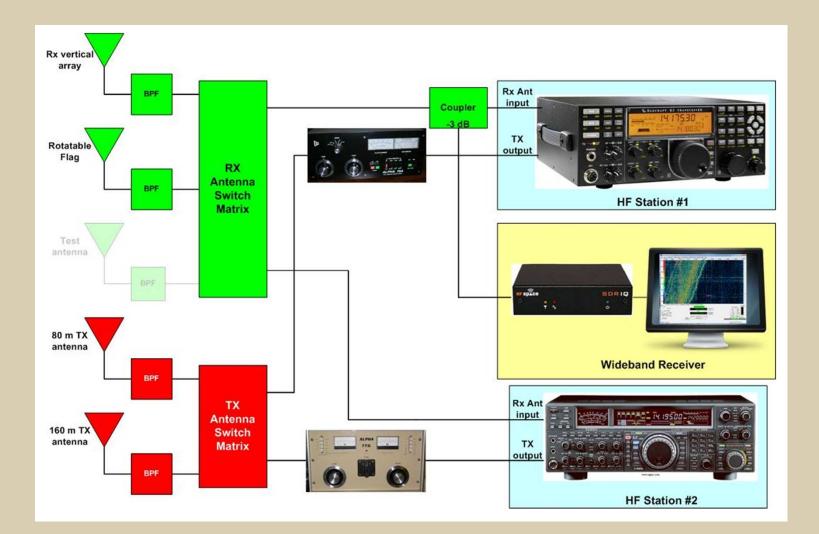
Ned Stearns, AA7A

How do you know you need a Receive Antenna?

 Scenario #1 – Many DX stations hear you much better than you hear them

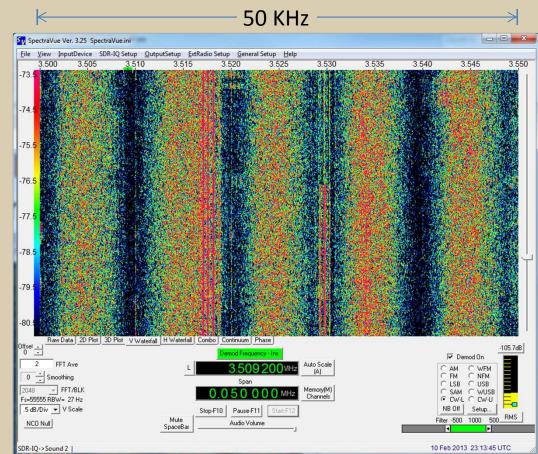
 Scenario #2 – When your DXer neighbor hears a lot of stations that you do not hear

 Scenario #3 – When you want to increase the likelihood of a successful DX QSO


What is Noise?

- Noise, (noun, 'noiz'): an unwanted signal or a disturbance (as static or a variation of voltage) in an electronic device or instrument (as radio or television)
- Noise types:
 - *Thermal*; not usually an issue on LF
 - <u>Shot noise</u>; unless you are using a 6AU6 in your LF receiver preamp, not an issue
 - <u>Flicker noise</u>; Maybe an issue on 137 KHz but not any of the higher amateur bands
 - <u>Atmospheric noise</u>; Major factor on LF
 - Undesirable signals; Major factor on LF

Method to study Noise

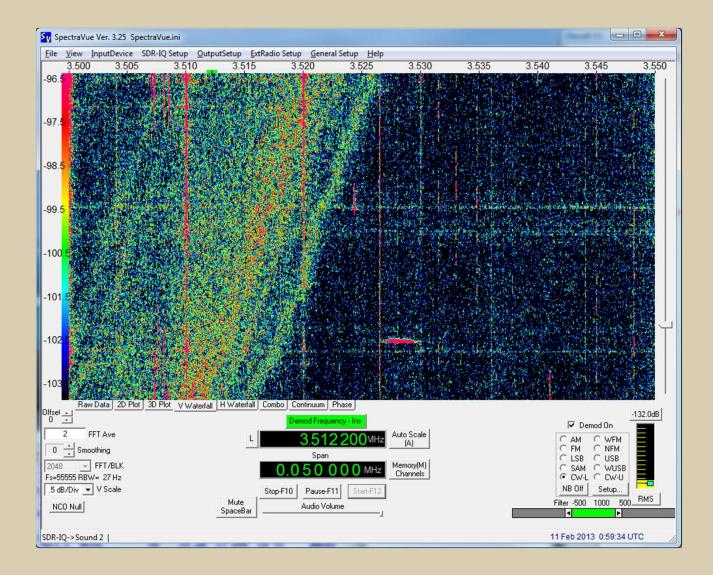

- Ham radio communications use narrowband channels
 - CW: 700 Hz
 - SSB: 3.1 KHz
 - AM: 6 KHz
- Most noise sources are due to transients and occupy bandwidths much wider than ham communication channels
- It is usually more meaningful to look at noise in wider bandwidths

Method to study Noise – AA7A LF System

What is Noise? – Undesirable Signals

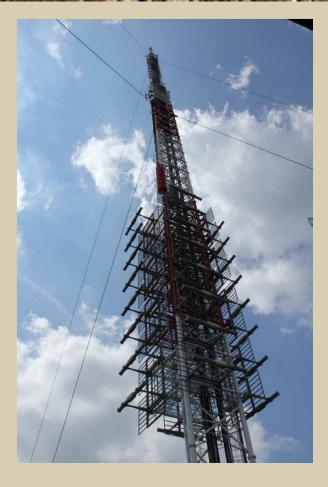
- Noise characteristics
 - Noise power in noise "hole" -105.7 dBm
 - Noise peaks 8 db
 higher 5 KHz away
 - Likely a plasma TX somewhere nearby
- Other discrete spectral artifacts

Spectrum of 80 meter CW DX band on 80 meter TX vertical array (South)

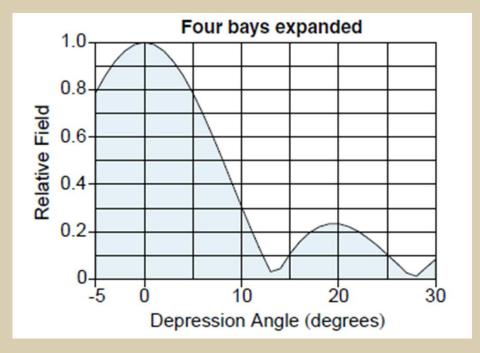

What is Noise? - Undesirable Signals

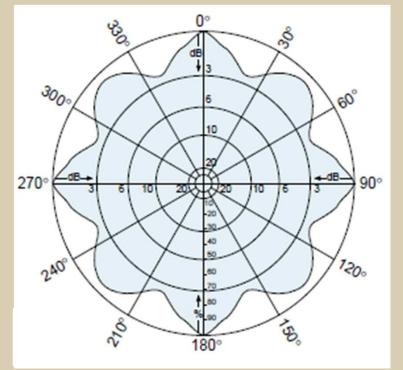
- Noise characteristics
 - Noise power in noise "hole" -134 dBm
 - Noise peaks 1 db higher 5 KHz away
 - Less coupling to local plasma TV
- Other discrete spectral artifacts much weaker

Spectrum of 80 meter CW DX band on 80 RX antenna array (SE)


What is Noise? – Undesirable Signals

RX Antennas – Do any good?


- It's all about the Signal-to-Noise ratio
 - Not antenna gain
 - Not about your S-meter reading
- Pattern is the most important attribute
 - HA5TI's six meter party story

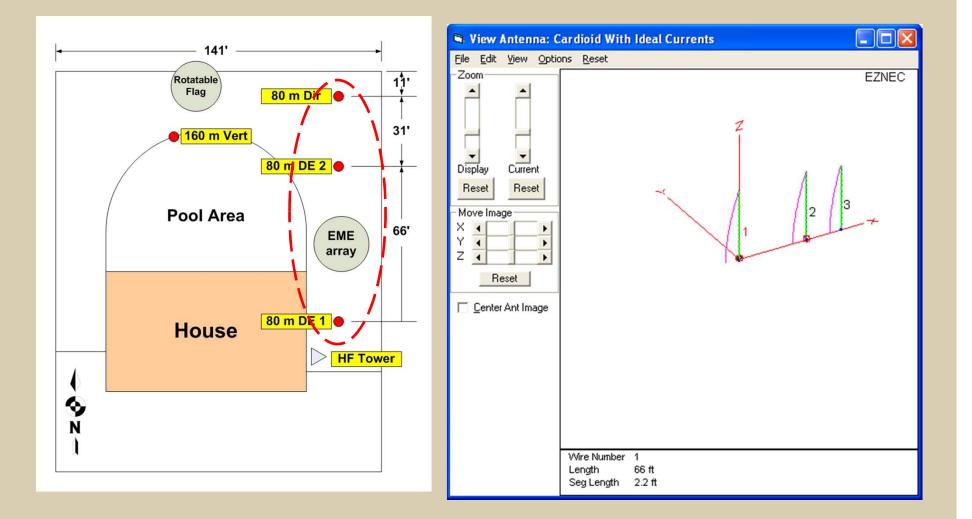

HG50MHZ Story...In their words

- 15 August 2011, HA television stations stop TX'ing on CH 1 (covering six meters)
- HA Hams celebrate with a special event where they start 6m activity using high power and CH 1 Transmitter Antenna signing HG50MHZ

Antenna pattern is good for TX'ing, but...

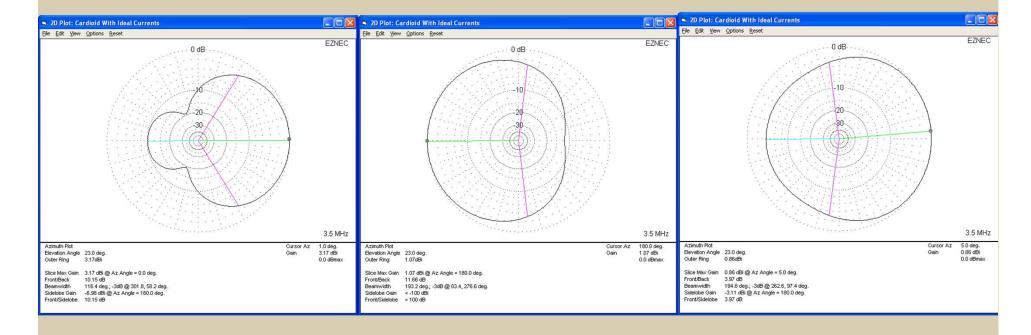
They had to use an antenna with a better pattern

- "we were struggling with understanding weak signals covered by high noise"
- "we erected a five element **DK7ZB Yagi**" and started working stations
- "It is very likely that we wouldn't have copied most of them with the broadcast antenna."


General strategies to improve receiving capabilities on LF bands

- Use antenna null feature to reduce interference from point radiating sources
- Use antenna pattern to reduce effects of lightning crashes from storm systems in the sub-tropics
- Use an antenna with a different elevation pattern (lower or higher launch angle then TX antenna)
- Use an antenna which provides spatial diversity when used in tandem with TX antenna

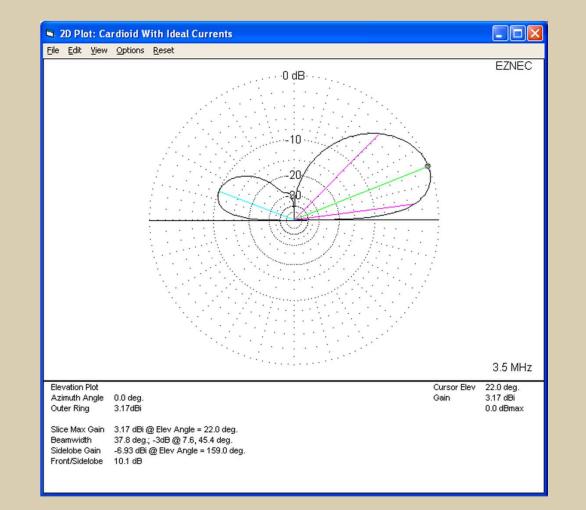
Starting point for RX antenna studies


- AA7A developed 3-element vertical array to chase the last 50 needed on 80 m
- Rotatable flag antenna with custom dual band preamp used as RX antenna
- Success was limited by ability to receive
- Was there more that could be done without moving closer to DX?

Starting Point – AA7A 80 m TX Antenna

3-element azimuth pattern

-z�


End-fire North

End-fire South

Broadside

Adding Director Increases Gain by 1.4 dB

3-element elevation pattern (end fire North)

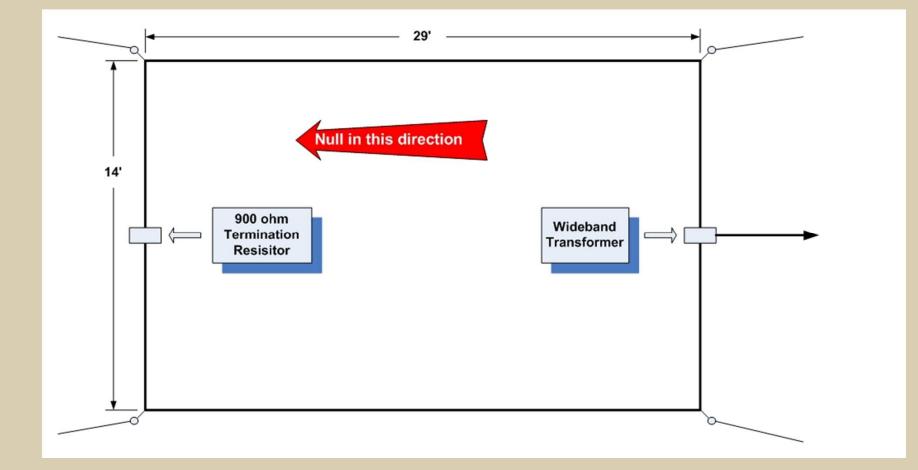
Adding Director Lowers Elevation of Main Lobe by 3 degrees

RX Antenna Performance vs Space (data from W8JI's RX Antenna web pages)

Antenna Type	RDF (dB)	20-degree forward gain (dBi)	Space required*
1/2λ Beverage	4.52	-20.28	2
Vertical Omni, 60 1/4λ radials	5.05	1.9	1
(Ewe Flag) Pennant	7.39	-36.16	1
K9AY	7.7	-26.23	1
1/2λ end-fire Beverages	7.94	-20.5	2
1λ Beverage	8.64	-14.31	4
two verts optimum phasing $1/8 \lambda$ spacing	9.14	-22.46	1
two 1λ Beverages Echelon 1/8 λ stagger	10.21	-15.45	4
Small 4-square $1/4 \lambda$ per side (optimum phase)	10.70	-15.79	2
1-1/2 λ Beverage	10.84	-10.88	6
Small 4-square $1/8\lambda$ per side (opt. phase)	10.97	-30.28	1+
Single 1.75λ Beverage	11.16	-6.50	7
2 Broadside 1.75λ Beverages .2λ spacing	11.36	-3.51	8
2 Broadside 1.75λ Beverages .4λ spacing	11.91	-3.50	8
.625λ x .125λ spaced BS/EF vertical array	12.5	-19.5	4
2 Broadside 1.75λ Beverages 5/8λ spacing	12.98	-3.50	9
2 Broadside 1.75λ Beverages .75λ spacing	13.48	-3.49	10

* Number of AA7A-sized property lots needed to fit antenna

How big are these RX antennas? – 2 X 1.75λ Beverages spaced 0.75λ apart

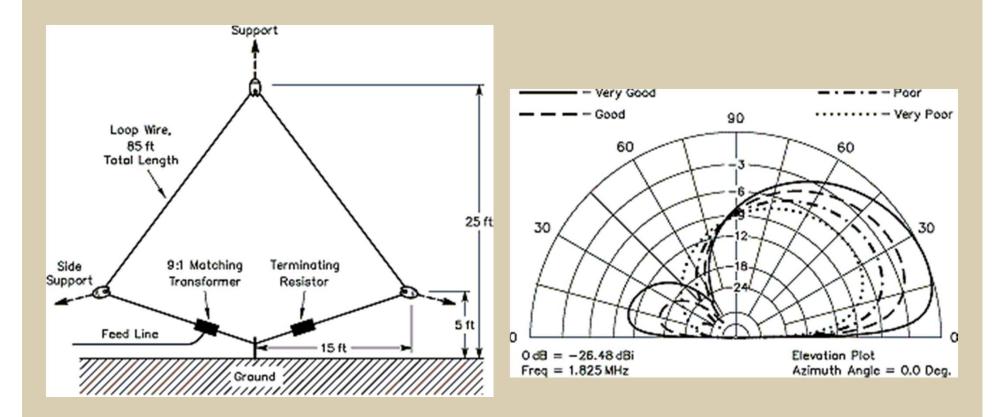


80 meter RX antenna will touch over 10 other 1 acre lots

Viable* LF RX Antenna Options

- Single $\lambda/4$ vertical tried it already
- Flag antenna tried it; some success with reducing point noise sources

Flag Antenna Concept


AA7A Rotatable Flag Antenna

Viable* LF RX Antenna Options

- Single λ/4 vertical tried it already
 Flag antenna tried it; some success wi reducing point noise sources
- K9AY untried; performance claims seem to be all over the map

K9AY Loop

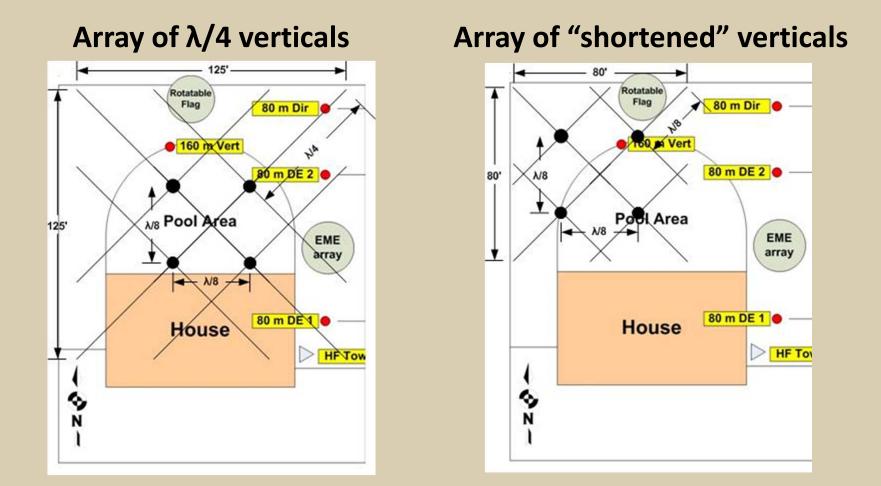
Gain & elevation patterns significantly affected by ground conductivity values

Viable* LF RX Antenna Options

- Single $\lambda/4$ vertical tried it already
- Flag antenna tried it; some success with reducing point noise sources
- K9AY untried; performance claims seem to be all over the map
- Two λ/4 verticals tried; limited pointing options
- Small 4-square of verticals untried; might be too large, unless...

* Those that fit in AA7A's backyard

RX Antenna Performance vs Space (data from W8JI's web pages)


Antenna Type	RDF (dB) 20-	degree forward gain (dBi)	Space r	equired*
1/2λ Beverage	4.52	-20. Is there	e a	2
Vertical Omni, 60 1/4λ radials	5.05	^{1.} configura		1
(Ewe Flag) Pennant	7.39	-36. that will f		1
K9AY	7.7	-26.23		1
1/2λ end-fire Beverages	Higher gain could	-20.5		2
1λ Beverage	eliminate need	-14.31		4
two verts optimum phasing 1/8 λ spacing	for a preamp	-22.46		1
two 1λ Beverages Echelon 1/8 λ stagger	10.21	-15.45		4
Small 4-square 1/4 λ per side (optimum phas	e) 10.70	-15.79		2
1-1/2 λ Beverage	10.84	10.88		Ó
Small 4-square $1/8\lambda$ per side (opt. phase)	10.97	-30.28		L+
Single 1.75λ Beverage	11.16	-6.50		7
2 Broadside 1.75λ Beverages .2λ spacing	11.36	-3.51		8
2 Broadside 1.75λ Beverages .4λ spacing	11.91	-3.50		8
.625λ x .125λ spaced BS/EF vertical array	12.5	-19.5		4
2 Broadside 1.75λ Beverages 5/8λ spacing	12.98	-3.50		9
2 Broadside 1.75λ Beverages .75λ spacing	13.48	-3.49	-	LO

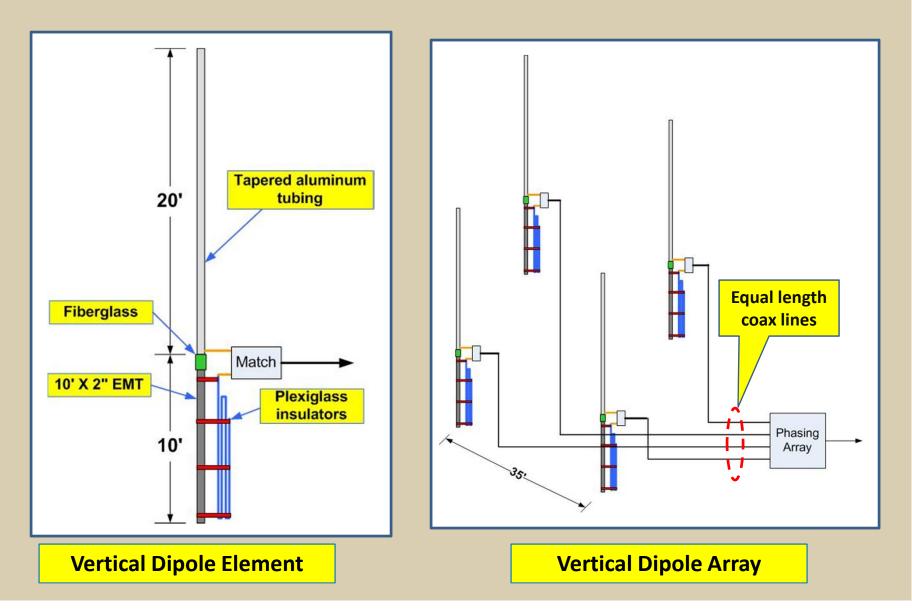
* Number of AA7A-sized property lots needed to fit antenna

AA7A's RX Antenna Project - small lot/high performance, single band rx antenna

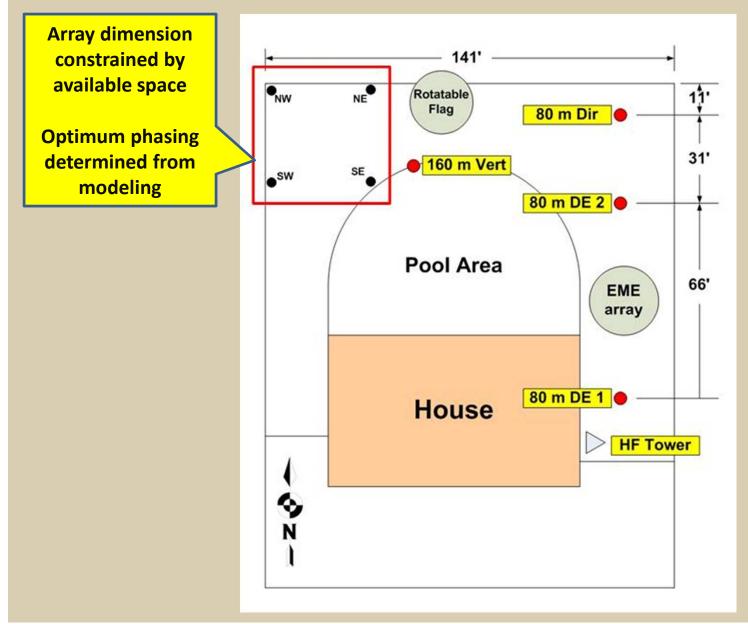
- Clean pattern that is steerable in 4 directions
 - 4-square array
- No preamplifiers to permit SO2R contest operation
 - Not electrically "too short"
- Fit in generally unusable part of AA7A back lot
- Above the urban clutter/layer of RF absorption
- Self-supporting (no guys)

4-Square sizing – Layout options

Traditional 4-square option takes up more room than desirable

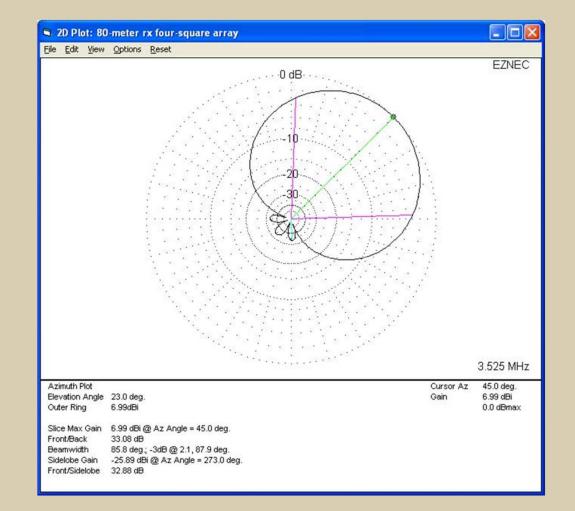

Electrically Small Dipole Antennas

- New concept: <u>electrically short, vertical dipole</u> as the antenna element in a 4-square array
- Dipole elements cancel horizontal component which results in less pattern uncertainty
- Gain is simply related to the physical dimensions of the dipole
- Increasing the electrical length by linear loading reduces impedance mismatch losses
- 30' tall elements require no guy wires


Short dipole receiving element

► 132' Full size 80 meter half wave dipole
H 40' → H Electrically short "80 meter" dipole (resonant @ 10.7 MHz)
Linear-loaded, electrically short "80 meter" dipole (resonant @ 10.7 MHz)
Loaded element should be only 16 dB less gain than full size element (~10 dB higher than Hi-Z array elements)

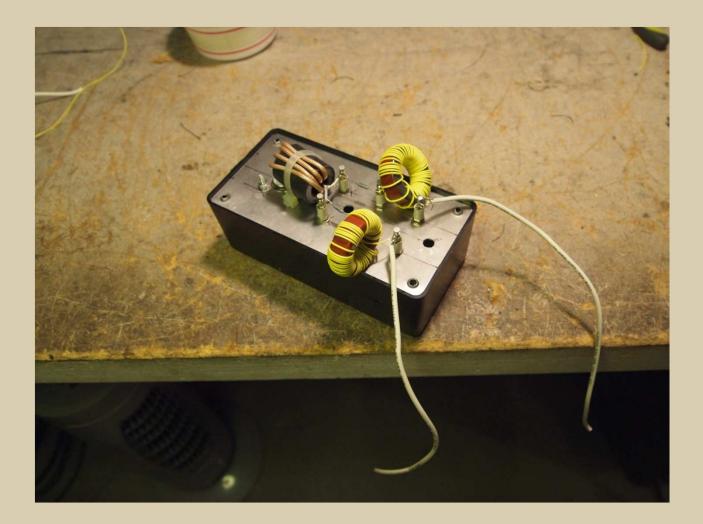
AA7A Vertical Dipole RX Array


It Fits! – Will it work?

EZNEC Modeling Results

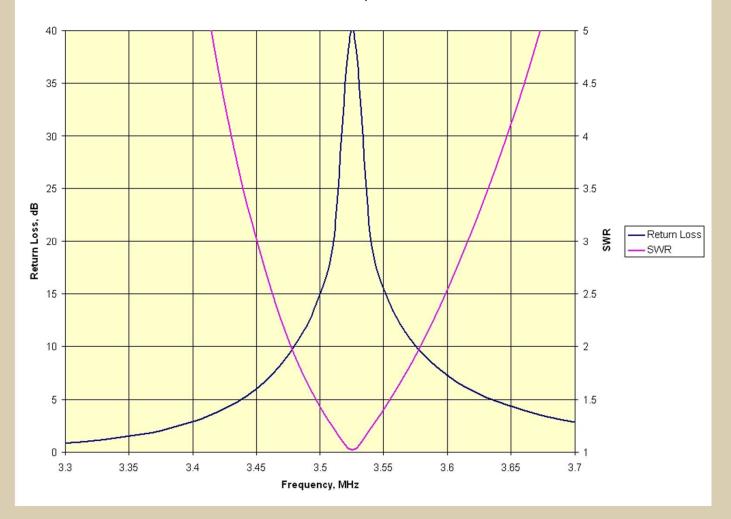
🖻 View Antenna: 8	0-meter rx four-squ	Jare	array												
Eile Edit View Optio	ons <u>R</u> eset														
Zoom						EZNEC									
Display Current	~	2	2	₹ /4	A	_	Source	ces						. 🗆 🗙	
Reset Reset	1	×	1		3	-	ource				ources				
			\searrow	1	- la	-	No. Specified Pos. Actual Pos.					Amplitude	Amplitude Phase Ty		
Move Image			19						# % From E1	% From E1		(V, A)	(deg.)	Туре	
Ŷ							1	1	0	12.5	1	1	0	1	
Z I I							2	2	0	12.5	1	1	-142	1	
Paul I							3	3	0	12.5	1	1	-142	1	
Reset						▶ *	• 4	4	0	12.5	1	1	284	1	
		_	Wires re <u>O</u> th											- 🗆 🗙	
	No wires selected	Г	Coord	Entry Mode		e Connection	s								
									Wires						
			No. End 1				End 2				1.0	Diameter	Segs		
				X (ft)	Y (ft)	Z (ft)	Conr				Z (ft)	Conn	(in)		
				0	0	0	Grou				20		1.5	4	
				0 35	35 0	0	Grou) 35 15 0		20 20		1.5 1.5	4	
				35	35	0	Grou		5 35		20		1.5	4	
		*	-				aiou	10 0			20		1.5	+	
					I.	1			1						

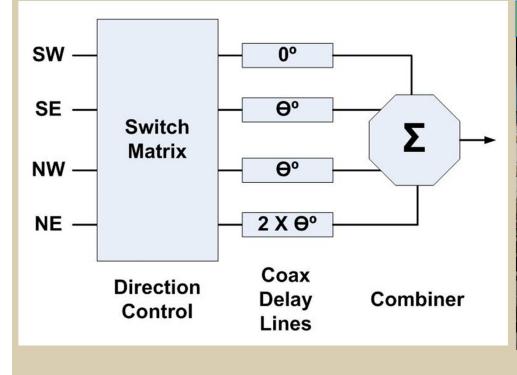
Pattern using optimum phasing

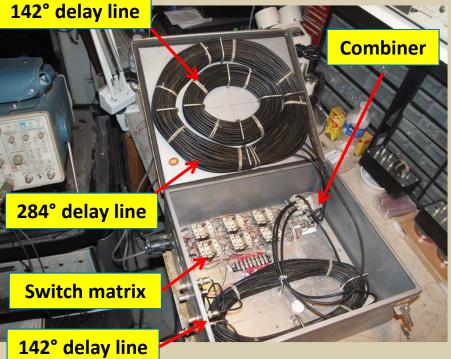

Dipole Construction

Matching Process

- 1. Tuned linear loaded half of dipole for resonance at 10.7 MHz
- 2. Measured impedance of dipole at 3.525 MHz
- 3. Calculated inductor value to cancel capacitive reactance on each side of dipole balanced feed
- Inserted resistors in series of each side of balanced feed to obtain 50 ohm match (only 3 dB loss)
- 5. Installed choke balun on coax lead to isolate feedline from the dipole

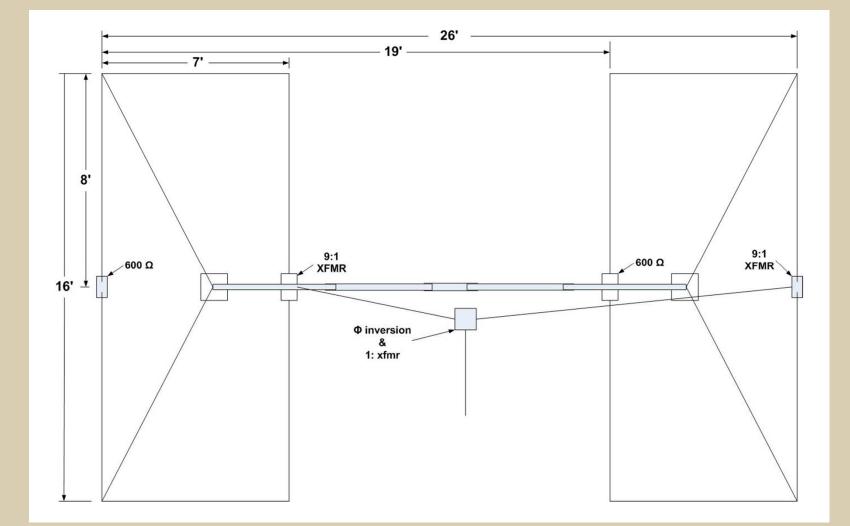

Matching Network for 80 CW


Element Matching Results


(Not bad for an Amateur)

80 m RX Vertical Feedpoint Characteristics

Phasing Unit Description

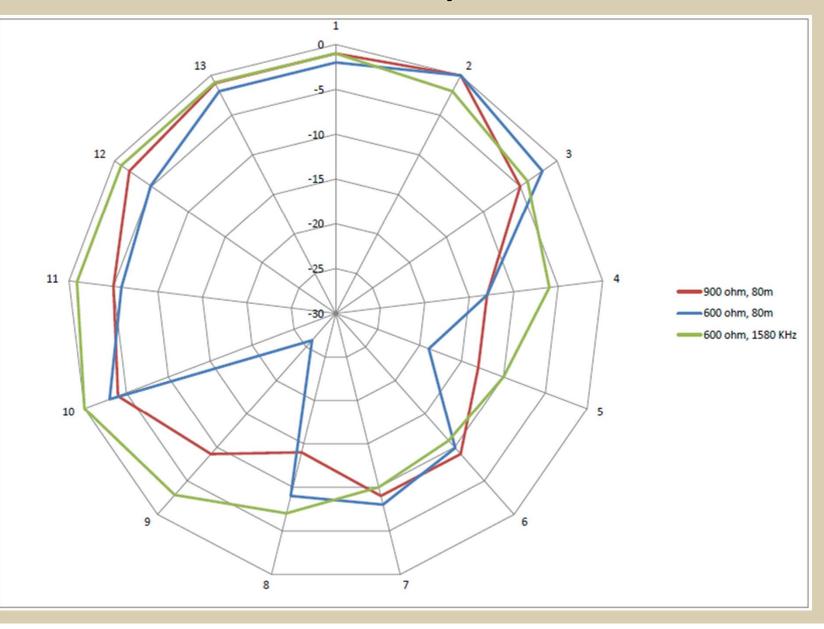

Does it work?

- Hell yes!
 - 32 dB front-to-back measured
 - Gain roughly 15 dB lower than 3 element full sized TX array
 - No preamp required!
- Hear anything?
 - Good results through 1st LF season (albeit a bad year)
 - Roughly 3 to 4 dB rx improvement over large TX array
 - More direction options for checking odd paths
 - Can dodge many of my local Plasma TV noise sources
 - Outstanding diversity receive antenna

What's Next?

- Add 160 meter capability
 - Add 2nd matching network for short dipole
 - Add incremental delay elements for optimized pattern
- Non-square array pattern layout design
- Waller Flag invented by Doug Waller, NX4D

Waller Flag Design



AA7A version of the Waller Flag

Measured pattern

Stop complaining and get to work

Bonus Slides

Topics

- Do I really need a receive antenna?
- What is Noise?
- Why do some antennas work better on receive?
- AA7A LF system as performance baseline
- RX antenna options and space requirements?
- Thoughts on antenna modeling?
- Proposed new RX antenna concept for city lots
- Results to date and future plans

LF Antennas have Special Concerns

- LF antennas are large and have significant capture of AM broadcast signals
- IM products can easily be generated in any metal joint
 - AA7A 80 m RX antenna has several BC stations at 0 dBm (1 milliwatt)
 - Good passive IM practices can keep mixing products -150 dBc or more (20 dB below rx noise floor)
 - One bad metal contact or preamp non-linearity can easily result in a spectrum full of inter-modulation (IM) noise
- Most relay contacts in LF antennas require burnishing every few months to eliminate pesky spectral artifacts

AA7A Experience on Antenna Modeling

- Antenna modeling is a tool
 - All models are wrong
 - Some models are useful
- Why do models not work?
 - Force currents of one polarization into conductors
 - Do not account for random polarization of inbound signals in real antennas
- AA7A's DF antenna development story